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Abstract

Electronically-active organic molecules have demonstrated great promise as novel soft

materials for energy harvesting and transport. Self-assembled nanoaggregates formed

from π-conjugated oligopeptides composed of an aromatic core flanked by oligopeptide

wings offer emergent optoelectronic properties within a water soluble and biocompat-

ible substrate. Nanoaggregate properties can be controlled by tuning core chemistry

and peptide composition, but the sequence-structure-function relations remain poorly

characterized. In this work, we employ coarse-grained molecular dynamics simula-

tions within an active learning protocol employing deep representational learning and

Bayesian optimization to efficiently identify molecules capable of assembling pseudo-1D

nanoaggregates with good stacking of the electronically-active π-cores. We consider the

DXXX-OPV3-XXXD oligopeptide family, where D is an Asp residue and OPV3 is an

oligophenylene vinylene oligomer (1,4-distyrylbenzene), to identify the top performing

XXX tripeptides within all 203 = 8,000 possible sequences. By direct simulation of

only 2.3% of this space, we identify molecules predicted to exhibit superior assembly

relative to those reported in prior work. Spectral clustering of the top candidates re-

veals new design rules governing assembly. This work establishes new understanding of

DXXX-OPV3-XXXD assembly, identifies promising new candidates for experimental

testing, and presents a computational design platform that can be generically extended

to other peptide-based and peptide-like systems.
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1 Introduction

Self-assembling π-conjugated peptides possessing a π-core flanked by peptide wings have

emerged as a versatile building block for the bottom-up fabrication of bio-compatible nanoag-

gregates with engineered optoelectronic properties. Overlaps between π-orbitals in neigh-

boring aromatic cores within supramolecular assemblies lead to the emergence of optical and

electronic properties including fluorescence, electron/hole transport, and exciton splitting,

and the flanking oligopeptide wings provide the capacity to operate in and interact with

biological environments.1–12 These peptidic materials have proven readily synthesizable and

responsive to external control mediated by pH, flow, light, salt concentration, and temper-

ature,13–20 and have found a host of potential applications in the context of photovoltaic

power generation, energy harvesting, and as organic transistors.7,9,21–27 The structural and

functional properties of the self-assembled nanoaggregates are governed by the molecular

chemistry of the π-core and the amino acid sequence of the peptide wings.

The Asp-X-X-X-(oligophenylenevinylene)3-X-X-X-Asp (DXXX-OPV3-XXXD) family rep-

resents one class of synthetic π-conjugated peptides possessing an oligophenylenevinylene π

core, terminal Asp residues, and amino acid side chains, where X represents one of the

20 natural amino acids (Fig. 1a). To assure the molecules are head-to-tail invariant, the

oligopeptide wings are constrained to be mirror-symmetric both in the identity of the amino

acids and the N-to-C directionality, such that each molecule possesses two C-termini. The

terminal residues are constrained to be Asp to endow each terminus of the molecule with

two carboxyl groups and provide a pH trigger for assembly: at pH>5 the four carboxyls are

deprotonated endowing the molecule with a (-4)e formal charge and disfavoring large scale

assembly, but at pH<1 the residues protonate, the molecule becomes neutral, and large-scale

aggregation proceeds.27 The DXXX-OPV3-XXXD family has attracted considerable experi-

mental and computational attention in recent years due to their demonstrated capability to

assemble into pseudo-1D optically and electronically active nanoaggregates whose structure

and properties can be tuned through selection of the X residues.17,22,25,28–30 Assembly in
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aqueous solvent under acidic conditions is driven by hydrophobic, π-π stacking, and hydro-

gen bonding interactions.25,27,28,31 The assembly of elongated peptides into linear aggregates

with in-register stacking and alignment of the π-cores favors π orbital overlap, electronic

delocalization along the backbone of the nanoaggragate, and the emergence of optical and

electronic functionality such as well-defined absorption and emission spectra, HOMO/LUMO

gaps, electron/hole conductivity, and exciton splitting capabilities (Fig. 1b,c).22,28,32–35

The complete DXXX-OPV3-XXXD family comprises 203 = 8,000 members correspond-

ing to all possible permutations of the 20 natural amino acids within the unspecified XXX

triplet. This vast size of this chemical space is both a blessing – the large palette of molecu-

lar chemistries provides enormous versatility in materials properties and the opportunity to

tailor structure and function – and a curse – it is a challenge to identify promising candi-

dates within this enormous space. Identifying the candidates capable of self-assembling into

well-ordered optoelectronic nanoaggregates and divining the design precepts dictating the

mechanism is a key goal in realizing these peptides as novel biocompatible optoelectronic

materials.

Edisonian traversal of the large chemical space of DXXX-OPV3-XXXD molecules by

trial-and-improvement experimentation is essentially intractable due to the high time and

labor costs associated with peptide synthesis and testing. To date, no more than 13 mem-

bers of the family have been experimentally synthesized and tested.22 Molecular simulation

offers an alternative means to perform high-throughput virtual screening of chemical space

to identify the most promising candidates for experimental testing. Since assembly proceeds

on length scales of tens of nanometers and microsecond time scales, this has motivated the

development of coarse-grained models explicitly parameterized against all-atom molecular

simulations17,29,39 (Fig. 1d). These models integrate out the electronic and atomistic de-

grees of freedom by lumping together small numbers of atoms into beads in order to furnish

a molecular model that offers a judicious compromise between chemical realism and the

computational efficiency required to directly simulate peptide assembly.29 Exhaustive sim-
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Figure 1: The DXXX-OPV3-XXXD system. (a) Chemical structure of the prototypical
DXXX-OPV3-XXXD peptide monomer. The oligophenylenevinylene π core (OPV3) is
flanked by oligopeptide wings (DXXX) that are mirror symmetric such that the identity
of the amino acids is inverted and the molecule possesses two C-termini. The X residues are
selected from the 20 natural amino acids such that the family comprises 203 = 8,000 distinct
molecules. (b) Molecular simulation snapshot of a self-assembled pseudo-1D nanoaggre-
gate spontaneously formed by the spontaneous association of DVAA-OPV3-VAAD peptide
monomers into a linear stack. Good stacking between the π-cores (colored blue) favors π
orbital overlap, electronic delocalization along the backbone of the nanoaggragate, and the
emergence of optical and electronic functionality. (c) Experimental transmission electron mi-
croscopy (TEM) image of self-assembled fibrils formed by DFFG-OPV3-GFFD peptides in
an acidic environment. Reprinted with permission from Ref.22 . Copyright (2014) American
Chemical Society. (d) Illustration of the mapping from the DGAG-OPV3-GAGD all-atom
structure to the coarse-grained representation at which the simulations in this work are
conducted. The coarse-grained beads corresponding to groupings of neighboring atoms are
labeled according to the Martini model employed in this work.36–38

ulation of all 8,000 candidates within the DXXX-OPV3-XXXD family remains, however,

computationally expensive. As we shall demonstrate, however, doing so is unnecessary to

parameterize a reliable surrogate model of peptide function and identify and validate the

most promising candidates within the family.

Chemical intuition is extremely valuable in guiding the computational search through
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chemical space, but it can perform poorly in the limits of data paucity, where there are too

few examples to infer patterns, and data abundance, where there are too many examples to

parse effectively. Further, inherent preconceptions and biases may push the search away from

potentially profitable regions of chemical space and overlook patterns in the high-dimensional

data that may reveal important determinants of molecular performance. Active learning

(a.k.a. sequential learning, optimal experimental design), and more specifically, Bayesian

optimization, presents a systematic approach to guide traversal of chemical space by using

information on all measurements conducted to date to inform the “next-best” measurement

to conduct.40–44 In this manner, active learning predicts an optimal sequence in which to

consider the molecular candidates in order to identify the optimal ones with minimal data

collection effort. For this reason, active learning and allied approaches have been rapidly

gaining traction in the materials discovery, engineering, and design communities, with these

approaches being deployed, for example, in the experimental discovery of novel shape memory

alloys,45 piezoelectrics,46 high glass transition polymers,40 the computational discovery of

drugs,43 and magnetocaloric, superconducting, and thermoelectric materials.41

Our primary goal is to efficiently identify members of the DXXX-OPV3-XXXD family

that exhibit self-assembly into desired pseudo-1D nanoaggregates with good overlap be-

tween the π-conjugated cores and are thus most promising in displaying emergent optical

and electronic functionality. We adopt a coarse-grained bead-level molecular simulation

model as the engine for our high-throughput virtual screen and couple this with a deep

learning-enabled active learning protocol to guide optimal traversal of chemical space. We

identify and computationally validate the top performing constituents of the 8,000-member

DXXX-OPV3-XXXD family after simulating only 2.3% of all possible molecules. This rep-

resents a massive saving over exhaustive sampling enabled by active learning. The absence

of any introduced human bias within the active learning protocol also proved to be valu-

able in identifying high-performing candidates incorporating methionine residues that were

not previously considered. A post hoc analysis of the observed assembly pathways provides
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supporting mechanistic understanding of the self-assembly behavior and exposes practical

precepts for molecular design. The rank ordered list of DXXX-OPV3-XXXD molecules pro-

duced by our computational analysis provides a useful filtration of the design space with the

top-performing candidates offering a massively reduced candidate space for experimental

synthesis and testing.

2 Methods

2.1 Molecular dynamics simulation

The DXXX-OPV3-XXXD peptides were modeled using a previously-developed coarse-grained

potential based on the Martini potential.17,29 Martini is a popular coarse-grained potential

that lumps approximately four heavy atoms into each coarse-grained bead, has demonstrated

great successes in modeling peptides, proteins, lipids, and carbohydrates,37,38,47–51 and offers

a good compromise between chemical specificity and the computational efficiency necessary

to probe the formation of large peptide aggregates. The potential was initially developed

for DFAG-OPV3-GAFD by refitting the native Martini parameters for bonded interactions

against all-atom simulation data.29 This bottom-up reparameterization of the bonded in-

teractions greatly improved agreement between the coarse-grained and all-atom distribu-

tion functions, potentials of mean force (PMF) for monomer stretching and dimerization,

and time-averaged contact maps.29 We generalize this model to the complete DXXX-OPV3-

XXXD family by maintaining the same parameterization of the bonds, angles, and backbone

dihedrals within the OPV3 core and employing default Martini parameters for the amino acid

side chains and all non-bonded interactions.36,38 An illustration of the all-atom to coarse-

grained bead-level mapping for DGAG-OPV3-GAGD is provided in Fig. 1d. Calculation

and comparison of the translational diffusion constants for the all-atom and coarse-grained

models of DFAG-OPV3-GAFD showed these to be in agreement within error bars, indicat-

ing no significant discrepancy in the (translational) dynamical time scales between the two
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models and that no time scale corrections to the coarse grained calculations are required.

Coarse-grained molecular dynamics simulations of peptide assembly were conducted using

the Gromacs 2018.6 simulation suite.52 Initial system configurations for each DXXX-OPV3-

XXXD considered were generated by randomly inserting 96 peptides into a 16.2×16.2×16.2

nm3 cubic simulation box with 3D periodic boundary conditions, corresponding to a con-

centration of approximately 35 mM. The amino acid residues are prepared in protonation

states corresponding to pH 1 to mimic pH-triggered experimental assembly under acidic con-

ditions. The coarse-grained peptides were then solvated in water to a density of 1.0 g/cm3 of

water using the Martini non-polarizable water model.36 Steepest descent energy minimiza-

tion was performed to eliminate high energy overlaps by removing forces greater than 1,000

kJ/mol.nm. Initial particle velocities were assigned from a Maxwell-Boltzmann distribution

at 298 K. All simulations were conducted in the NPT ensemble at 298 K and 1 bar using

a velocity-rescaling thermostat53 and Parrinello-Rahman barostat.54 Equations of motion

were numerically integrated using the leap-frog algorithm with a 5 fs time step55 and bond

lengths fixed using the LINCS algorithm.56 Lennard Jones interactions were smoothly shifted

to zero at 1.1 nm and reaction-field electrostatics were employed using a relative electrostatic

screening constant of 15 appropriate for the non-polarizable water model.37 An initial 100

ps equilibration run was conducted, after which time the temperature, pressure, density,

and energy all stabilized. This was followed by a 3 µs production run, after which time the

structural evolution of the system as measured by graphical analysis of the self-assembled

aggregate (see Section 2.2.1) was stationary in time. Simulation snapshots were harvested for

analysis every 50 ps over the course of the production run. Calculations were predominantly

conducted on single NVIDIA GeForce RTX 2080 Ti cards and achieved execution speeds of

∼1.45 µs/day.
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2.2 Active learning peptide discovery

An active learning protocol is employed to direct a principled traversal of the DXXX-OPV3-

XXXD candidate space and minimize the number of coarse-grained simulations required to

discover the highest-performing candidates.40–42 The fundamental challenge is that evalu-

ating the quality of each peptide by direct simulation is expensive, so we wish to identify

the best peptide candidates in the fewest number of simulations. The procedure we em-

ploy is in large part inspired by and adapted from a pioneering deep representational active

learning approach for molecular drug discovery developed by Gomez-Bombarelli et al.43 Our

approach comprises four main steps and is illustrated schematically as an iterative active

learning cycle in Fig. 2. The coarse-grained molecular simulation engine representing our

measurement function within the protocol is described in Section 2.1, and we define our

fitness function in Section 2.2.1. Appreciating that some of the more technical machine

learning concepts may be foreign to some readers in the molecular modeling community, we

expose these steps in the protocol in some detail along with their specific adaptations to

our molecular system, but those readers familiar with variational autoencoders, Gaussian

process regression, and Bayesian optimization may feel free to skim over Sections 2.2.2-2.2.6.

All codes are developed in Python 3 making use of the Scikit-learn,57 NumPy,58 Keras,59

and ORCA60 libraries. Jupyter notebooks implementing our methods are hosted on GitHub

(https://github.com/KirillShmilovich/ActiveLearningCG).

2.2.1 Step 1: Definition of fitness function for self-assembled aggregates

To perform active learning discovery in our predefined chemical space we define a scalar-

valued fitness function f : fi = f(DXXX-OPV3-XXXDi) that assigns a quality to each

peptide in terms of its capacity to self-assemble into pseudo-1D nanoaggregates. Linear

aggregates with good overlap between the π-conjugated cores are most promising in dis-

playing emergent optical and electronic functionality and therefore anticipated to possess

the most desirable materials properties. We have previously employed DFT calculations
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Figure 2: Active learning cycle for the data-driven discovery of optimally self-assembling
DXXX-OPV3-XXXD peptides. The cycle contains four components. (1) Coarse-grained
molecular simulations are performed on selected DXXX-OPV3-XXXD candidates and the
quality of the self-assembled aggregates formed by molecule i measured according to a scalar
fitness fi. (2) The DXXX-OPV3-XXXD family is projected from the high-dimensional
chemical space of molecular structures into a low-dimensional latent space embedding
E : DXXX-OPV3-XXXDi → zi ∈ Rd using a variational autoencoder (VAE). The dimen-
sionality of the latent space is optimized during each cycle. (3) A Gaussian process regression
(GPR) model is constructed over the VAE latent space linking the latent space coordinates of
each DXXX-OPV3-XXXD family member to the scalar fitness function measuring the qual-
ity of their self-assembled aggregates f : f̂i = f(zi) = (f ◦ E)(DXXX-OPV3-XXXDi). The
GPR mapping f is retrained each cycle over all DXXX-OPV3-XXXD candidates that have
been simulated to date and for which measures of the fitness function fi, i ∈ sampled is avail-
able, and is then used to predict the fitness of unsimulated candidates f̂j, j ∈ unsampled.
(4) The predicted means and uncertainties for f̂j, j ∈ unsampled furnished by the GPR
surrogate model are combined within an active learning acquisition function to identify the
“next-best” candidates for which to perform coarse-grained molecular simulations to drive
sampling towards the most promising candidates. The loop is cycled until the GPR surrogate
model no longer changes with additional data collection and can then be used to reliably
identify the top candidates for computational validation.

to make direct predictions of optoelectronic properties, but the high computational cost of

these calculations limit them to aggregates of small numbers of peptides (dimers and trimers)
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and require omission of the flanking amino acid residues and solvent.28 As such, these cal-

culations are poorly suited to high-throughput virtual screening for large-scale aggregation

behavior. Consequently, we define and optimize a structural measure of assembly quality in

our coarse-grained molecular simulations as a proxy for optical and electronic functionality.

This simplification massively expedites sampling in the full chemical space and provides a

means to coarsely screen chemical space and focus a subsequent experimental search on the

most promising candidates. Alternatively, this computational screen can be viewed as a pre-

liminary filtration within the coarsest level of a nested hierarchy of increasingly expensive

all-atom and/or electronic structure calculations.

In order to specify f we define a geometric criterion by which a pair of peptides are con-

sidered to form part of the same pseudo-1D nanoaggregate. To do so, we adopt a distance

metric that we have previously employed to define clustering in DFAG-OPV3-GAFD assem-

bly17,29 and asphaltene aggregation.61 This so-called “optical distance” metric is defined as

the minimum center of mass distance between aromatic cores in molecule a and b,

dopticalab = min
i∈core(a),j∈core(b)

rij, (1)

where rij is the intermolecular center-of-mass distance between the aromatic rings i and

j within the OPV3 cores, and the minimization proceeds over the three aromatic rings

i ∈ core(a) in molecule a, and the three aromatic rings j ∈ core(b) in molecule b. Pairs

of molecules a and b which satisfy dopticalab < rcut = 0.7 nm are considered to reside within

the same cluster.17,29 The cutoff rcut = 0.7 was tuned to the mean of the distribution of

dopticalab collected over DFAG-OPV3-GAFD peptide dimers with good in-register stacking of

the OPV3 cores.29 In contrast with other choices of peptide clustering metrics based, for

example, on the overall center-of-mass or proximity of the peptide wings, the optical metric

assures close intermolecular proximity of at least one pair of OPV3 aromatic rings in a

pair of associated peptides. This close association promotes π electron overlap, electron
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delocalization, and the emergence of optoelectronic function, and it is for this reason that

this metric is termed the optical distance metric.17,29,39

Given this definition, a natural choice for the fitness fi of molecule i is the number of

such optical contacts in a self-assembled aggregate, since maximizing this value will promote

electronic delocalization and the emergence of optoelectronic functionality. We evaluate the

fitness function by representing the molecular system as a dynamically-evolving interaction

graph in which the peptides compose the vertices V = {v1, v2, . . . , vN} and the edges E =

{e1,2, e1,3, ..., e95,96} are assigned between pairs of vertices va and vb if dopticalab < rcut = 0.7.

An illustration of the evolution of the interaction graph over the course of a 3 µs simulation

of DDAI-OPV3-IADD assembly is presented in Fig. 3. The number of vertices |V | = 96 is

fixed by the number of peptides in the system. Maximization of the number of edges |E(t)|

at time t is therefore equivalent to maximizing the mean degree of each vertex in the graph

κ(t) = 2|E(t)|
|V | . As such, we adopt as our fitness function,

fi = κ(t;DXXX-OPV3-XXXDi) =
2|E(t;DXXX-OPV3-XXXDi)|

|V |
, (2)

where the time average denoted by the overbar is performed over the terminal 50 ns of the

3 µs production run. Standard errors in the mean are estimated by block averaging the

terminal 50 ns in five contiguous 10 ns blocks.

A potential criticism of the fitness function is that κ achieves a maximum for all-to-all

connectivity of the graph, and its maximization would therefore appear to not necessarily

favor pseudo-1D linear stacks. Mathematically this is true, but there are strong physical

limitations on the maximum attainable value of κ since the excluded volume of the π cores

allow then to form optical associations with a limited number of partners. The largest value

observed in all of our calculations is κ = 6.07 (cf. Table 1), and visual inspection of the

terminal aggregates confirms that κ is positively correlated with the formation of elongated

pseudo-1D nanoaggregates similar to those illustrated in the t = 3,000 ns panel of Fig. 3.
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t = 0 ns t = 50 ns t = 500 ns t = 3,000 ns

κ = 0.13 κ = 3.69 κ = 5.67 κ = 6.08 

DDAI

Figure 3: Dynamical evolution of the self-assembled structures of DDAI-OPV3-IADD over
the course of a 3 µs coarse-grained molecular simulation. Snapshots of the molecular simu-
lation show molecules in which the OPV3 π cores are colored blue, the peptide wings faded
grey, and water is removed for clarity. The interaction graph corresponding to each snapshot
is shown directly below each image. The vertices V corresponding to each peptide are colored
red, and edges E between peptide pairs defined by dopticalab < rcut = 0.7 (Eqn. 1) and colored
grey. The average degree κ = 2|E|

|V | is reported at the bottom of each panel. At t = 0 ns, the
96 randomly placed peptides form essentially a monomeric dispersion, with the exception of
five dimer pairs, and the system possesses a correspondingly low κ = 0.13. As the simulation
progresses, the peptides self assemble under the influence of hydrogen bonding, π-π stacking,
and hydrophobic interactions into small (t = 50 ns, κ = 3.69) and then larger (t = 500 ns,
κ = 5.67; t = 3,000 ns, κ = 6.08) aggregates with a commensurate increase in the mean
degree κ. In this figure, and throughout the paper, molecular renderings are generated using
VMD,62 and interaction graphs produced using NetworkX.63

2.2.2 Step 2: Learning latent space embeddings using variational autoencoders

In Step 3 (Section 2.2.3) we describe our training of a Gaussian process regression (GPR)

surrogate model to predict the fitness of candidate molecules that have not been simu-

lated based on those that have. The predictions of this model are then used to perform

active learning. We experimented with constructing the GPR directly over the chemical

space of DXXX-OPV3-XXXD molecules by measuring pairwise distances between the XXX
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tripeptides using BLOSUM substitution matrices,64 but following Gomez-Bombarelli et al.,43

we found this approach to yield inferior surrogate models to those constructed over data-

driven low-dimensional embeddings of the molecules generated using a variational autoen-

coder (VAE).65 The low-dimensional VAE latent spaces also conveys advantages in that

low-dimensional GPRs tend to be more robust, chemically similar molecules tend to be

embedded proximately in the latent space providing interpretability of the chemical space

through dimensionality reduction, and the continuous and differentiable nature of the latent

space makes it well-suited to global optimization.43,66

We represent the DXXX-OPV3-XXXD molecules to the VAE only through the identity

of the XXX tripeptide, since this is the only differentiating feature between molecules. We

base this representation on the coarse-grained Martini model used to perform our molecular

simulations. This representation comprises two components for each molecule i: (i) an

adjacency matrix Ai, which captures the connectivity of beads within the tripeptide, and

(ii) a one-hot encoded composition vector of bead-types Ti specifying the identity of the

Martini beads (Fig. 4). Since peptide sequences may contain varying numbers of coarse-

grained beads, we standardize the size of the adjacency matrix Ai ∈ R15×15 to be sufficiently

large enough to accommodate the largest tripeptide (Trp-Trp-Trp) and pad the array with

zeroes for smaller molecules. A one-hot composition vector of length Ti ∈ R75 is sufficient to

accommodate all tripeptide compositions considered. For each molecule i, the tuple (Ai,Ti)

defines the input provided to the VAE.

The architecture of the VAE is illustrated in Fig. 5. Given the two-part input (Ai,Ti)

for molecule i, the encoder block processes this through two parallel networks to perform

feature extraction from each input. The Ai resemble a small image which motivate using

a short series of convolutional layers to treat these inputs, whereas the binary Ti vectors

are passed through a series of fully-connected dense layers. The features extracted by the

encoder through the two parallel encoder networks are subsequently concatenated and used

to generate the mean µi and standard deviation σi of a Gaussian distributed latent space

14
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Figure 4: Schematic of the representation of each XXX tripeptide to the VAE. The Martini
representation of each tripeptide i, in this example Trp-Val-Tyr (WVY), is converted into an
adjacency matrixAi ∈ R15×15 specifying the connectivity of beads within the tripeptide and a
one-hot composition vector Ti ∈ R75 specifying the identity of the beads. The tuple (Ai,Ti)
defines the input provided to the VAE. A pre-defined sequential numbering is employed for
the beads in each amino acid. The adjacency matrix is padded with rows and columns of
zeros to represent tripeptides containing fewer than the maximum number of 15 beads. The
colored blocks in the adjacency matrix and composition vector correspond to the colors of
the amino acids in the Martini molecule.

embedding zi ∼ N (µi,σi) ∈ Rd. The dimensionality of the latent space is treated as

a hyperparameter that is optimized during each cycle of active learning and is found to

lie in the range d ∈ [4, 10]. The decoder then attempts to reconstruct (Ai,Ti) from the

latent encoding zi again using two parallel networks. The part of the decoder predicting the

reconstruction T̂i is identical to the architecture of the encoder, whereas the part predicting

the reconstruction Âi is simply another series of fully-connected layers that is reshaped to

match the size of the input. The overall action of the VAE is the functional composition of

the encoder E : zi = E(Ai,Ti) and decoder D : (Âi, T̂i) = D(zi) blocks such that the total

effect of the network is (Âi, T̂i) = (D ◦ E)(Ai,Ti).

The VAE is trained by minimizing the VAE loss LV AE composed of a reconstruction term
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Figure 5: Architecture of the variational autoencoder (VAE) used to generate the DXXX-
OPV3-XXXD latent space embedding. The VAE accepts as inputs adjacency matrix and
composition vector tuples (Ai,Ti) and employs two parallel encoders to perform feature
extraction and learn the mean µi and standard deviation σi of a Gaussian distributed latent
space embedding zi ∼ N (µi,σi) ∈ Rd. The decoder generates approximate reconstruc-
tions (Âi, T̂i) of the inputs from the latent space representation. The network is trained
by minimizing a loss function balancing reconstruction accuracy and a regularization term
constraining the latent space to follow a multidimensional Gaussian distribution (Eqn. 3).
The dimensionality d of the latent space is treated as a hyperparameter that is optimized
during each cycle of active learning.

LRec and a Kullback-Leibler (KL) divergence term LKL,65,67

LV AE = LRec + LKL, (3)

LRec = Ei[BCE(Âi,Ai) + BCE(T̂i,Ti)])

≈
∑

i∈mini-batch

[−
15∑
j=1

(Ai,j log(Âi,j) + (1− Ai,j) log(1− Âi,j))

−
75∑
j=1

(Ti,j log(T̂i,j) + (1− Ti,j) log(1− T̂i,j))], (4)

LKL = DKL(z = E(A,T) || N (0, I))

≈
∑

i∈mini-batch

[−1

2

d∑
j=1

(1 + log(σ2
i,j)− σ2

i,j − µ2
i,j)], (5)

where BCE(x,y) is the binary cross entropy between the reconstructions x and ground
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truth y, DKL(Q || P ) is the Kullback-Leibler divergence from P to Q, and I is the n-by-n

identity matrix. The reconstruction term LRec encourages the VAE to reconstruct the inputs

through the low-dimensional latent space information bottleneck. In contrast to a vanilla

autoencoder which only aims to minimize LRec, the KL divergence term LKL is an effective

regularizer which imposes a multivariate Gaussian prior on the latent space and prevents

the VAE from essentially “memorizing” the data set and learning a trivial identity mapping

through a disconnected latent space.67 Training is performed by passing tuples (Ai,Ti)

through the VAE in mini-batches of size 32 and updating the network parameters with

mini-batch gradient descent using the Adam optimizer.68 The VAE loss LV AE is typically

observed to plateau within 4,000 epochs. VAE hyperparameters were selected by exploratory

hyperparameter tuning of the batch size over the range [8, 128], the learning rate over the

range [0.1, 0.00001], the number of hidden layers in the decoder/encoder over the range [1,10],

the dimension of the dense layers over the range [8, 1024], and the size of the convolutional

kernel over the range [2, 7]. The final set of hyperparameters including batch size of 32,

learning rate of 0.001, and the neural network architecture presented in Fig. 5 were selected

after observing high R2 scores in downstream property prediction (cf. Sections 2.2.3, 2.2.5,

and 3.1). We note that the regularization introduced by the KL divergence term LKL serves

to prevent over-fitting and enables us to train over the full set of molecules to be embedded

by the VAE.

We present in Fig. 6 an example of a d = 3 VAE latent space embedding of the DXXX-

OPV3-XXXD family. We color each member of the family by the number of beads in the

XXX tripeptide to show that the first dimensional of the latent space z1 is approximately

correlated with molecular size, possessing a Pearson correlation coefficient ρ(z1, size) = 0.858

(p-value < 1×10−15). The other two dimensions in this example are also some functions of

molecular composition and topology, but prove more challenging to correlate with physi-

cally interpretable observables. Physical interpretability of the latent space dimensions is

a pleasing but not required property of the embedding. The primary purpose of the VAE
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embedding is to provide a smooth, low-dimensional molecular representations for the GPR

surrogate model. We note that the latent space embedding could be shaped and made

more interpretable by simultaneous training of a supervised regression model as suggested

by Gomez-Bombarelli et al.43

Figure 6: Illustrative visualization of d = 3 VAE latent space embedding of the DXXX-
OPV3-XXXD family. The embedded molecules are colored according to the number of
beads in the XXX tripeptide and selected molecules are visualized. The first dimensional of
the latent space z1 is correlated with molecular size ρ(z1, size) = 0.858 (p-value < 1×10−15)
providing a visual illustration that similar molecules are embedded close together in the VAE
latent space.

2.2.3 Step 3: Gaussian process regression surrogate models

Fitness measurements fi, i ∈ sampled are available for those molecules DXXX-OPV3-

XXXDi for which we have performed coarse-grained molecular simulation. Given these
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data we wish to predict the fitness of all remaining candidates f̂j, j ∈ unsampled. This

constitutes a supervised regression task where we wish to train a surrogate model f over

a small number of training examples to predict the fitness of out-of-training examples as a

function of their location in the VAE latent space: f : f̂i = f(zi) = (f ◦ E)(Ai,Ti). In this

manner, the regression model “short circuits” expensive direct simulation prediction of fitness

with a cheap surrogate model, and eliminates the need to perform exhaustive calculations

over all molecules in the family. The quality of the model predictions depends on the number

and chemical similarity of the training data: the model is expected to perform better with

larger training sets and make more accurate predictions for out-of-training examples that are

chemically similar to examples in the training set. As such, we expect the model to improve

with additional cycles around the active learning loop. For the purposes of active learning

(Section 2.2.4), it is also vital to perform uncertainty quantification on the model predictions

so that we can both direct sampling towards the most high-performing candidates predicted

by the model (exploitation) and towards undersampled areas where the model possesses the

highest uncertainties (exploration).69 For this reason, we select Gaussian process regression

(GPR) to construct our surrogate model f : f̂i = f(zi) as a flexible, non-parametric, Bayesian

regression approach that comes with built-in uncertainty estimates.69–72

The fundamental principle of a GPR is to employ a Gaussian process to specify a Bayesian

prior distribution over regression functions fitting the data, and then to compute the pos-

terior distribution over those functions that are in agreement with the training data.72 The

Gaussian process is fully specified by its mean function, which is typically defined to be zero,

and its covariance function for which we choose the popular squared exponential kernel,

k(z, z′) = exp(− 1

2γ
||z− z′||2), (6)

where z and z′ denote latent space vectors and the bandwidth of the kernel γ is a hyper-

parameter defining the characteristic length scale over which latent space vectors “see” one
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another. Under these choices, the predicted fitness f ∗ = f(z∗) for a new point z∗ outside of

the training data is a Gaussian distributed random variable with,71,72

f ∗ ∼ N (µf∗ , σf∗), (7)

µf∗ = K(z∗,Z)
[
K(Z,Z) + (σ2

f )
T I
]−1

f ,

σf∗ = K(z∗, z∗)−K(z∗,Z)
[
K(Z,Z) + (σ2

f )
T I
]−1

K(z∗,Z)T ,

where I is the n-by-n identity matrix, f = [f1, f2, . . . , fn]T is the vector of (noisy) measure-

ments of fitness for the n training points Z = {z1, z2, ..., zn} computed in our coarse-grained

molecular simulations, and σ2
f = [σf1 , σf2 , . . . , σfn ]T are associated variances of assumed i.i.d.

Gaussian noise estimated by block averaging (Section 2.2.1), and the K matrices hold the

covariances within and between the training data Z and new point z∗,

K(Z,Z) =


k(z1, z1) k(z1, z2) · · · k(z1, zn)

...
... . . . ...

k(zn, z1) k(zn, z2) · · · k(zn, zn)

 , (8)

K(z∗,Z) = [k(z∗, z1), k(z∗, z2), · · · , k(z∗, zn)] , (9)

K(z∗, z∗) = k(z∗, z∗). (10)

The (σ2
f )
T I terms account for the uncertainty inherent in our measurements of f through

an assumed Gaussian noise model.71 These terms can also be conceived as a Tikhonov

(a.k.a. ridge or nugget) regularization of the K(Z,Z) matrix that stabilizes its matrix inverse

and is particularly useful when this matrix is ill-conditioned due to the close proximity

of two or more training points in Z.73 A corollary of this regularization is that the GPR

posterior is not a perfect interpolator of the training data due to the presence of measurement

noise, and we should anticipate residual discrepancies on the order of σf between the GPR

predictions and the our measurements of f . The predictive accuracy and robustness of the
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GPR is enhanced by the smooth, continuous, and low-dimensional nature of the VAE latent

space, which embeds chemically similar points nearby one another and therefore promotes

transfer of information to new out-of-training points based on chemically proximate training

examples. The GPR prior and posterior are updated during each cycle of the active learning

loop as additional training data are collected.

2.2.4 Step 4: Bayesian optimization

The final step in the cycle is to use the predictions of the surrogate GPR model to identify

the next peptide candidates to simulate. We frame this active learning problem as a Bayesian

optimization, where we have an expensive, non-differentiable, black-box function with noisy

evaluations – the fitness of each molecule evaluated by coarse-grained molecular simulation

– that we wish to optimize in the minimum number of evaluations. Bayesian optimization

defines an acquisition function u that wraps around the current surrogate model to identify

peptides with a high chance of being better than the current leader in the training data. We

can represent optimization of the acquisition function as,

z† = argmax
z

u(z|Z = {(z1, f1), (z2, f2)..., (zn, fn)}), (11)

where z† is the VAE latent space coordinates of the DXXX-OPV3-XXXD molecule that

maximizes the acquisition function u, and the maximization is conditioned on the n samples

{(z1, f1), (z2, f2)..., (zn, fn)} collected to date. The surrogate model f enters the maximiza-

tion through the choice of acquisition function, for which many choices are available.69 We

employ the popular expected improvement (EI) acquisition function that provides a balanced

trade-off between exploitation – selection of points where the surrogate model posterior mean

µf (z) is large – and exploration – selection of points where the surrogate model posterior
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variance σf (z) is large.69,74,75 Following Lizotte, the EI is defined as,76

u(z|Z) = EI(z|Z) =


(µf (z)− f(z+)− ξ)Φ(Z) + σf (z)φ(Z) σf (z) > 0

0 σf (z) = 0

, (12)

Z =


µf (z)−f(x+)−ξ

σf (z)
σf (z) > 0

0 σf (z) = 0

, (13)

where f(z+), z+ ∈ Z = {z1, z2, ..., zn} is the maximum fitness value among all n sampled

candidates to date, Φ and φ are the cumulative distribution function and probability den-

sity function of the standard normal distribution, and the hyperparameter ξ controls the

exploration-exploitation trade-off. The first term in Eqn. 12 promotes exploitation and the

second promotes exploration: when ξ is small the EI will favor exploitation and select points

with high posterior mean, while if ξ is large exploration is performed selecting points with

large posterior uncertainty.69

Active learning typically proceeds by selecting a fixed value ξ = 0.0169,76 of the exploration-

exploitation trade-off, identifying the candidate that maximizes the EI, and then performing

expensive function evaluation (here a coarse-grained molecular simulation) for that candi-

date. We employ a slightly modified version of this approach that effectively integrates over

ξ and performs active learning in batches, which has the advantages of (i) eliminating the

sensitivity in selection to the hyperparameter ξ, (ii) spreading the exploit-explore trade-off,

and (iii) making more efficient use of parallel compute resources to conduct multiple simu-

lations in parallel in the same wall clock time. Specifically, we maximize the EI acquisition

function over the range log10 ξ ∈ [−4, 0.4] and select up to four candidates over this range as

the “next-best” candidates that our available computational resources allow us to simulate in

parallel. Molecules that have already been sampled in preceding rounds are excluded from

the pool of available candidates at each round. Where more than four candidates emerge

from the EI maximization, we randomly select four members of this set. An example of this
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selection procedure is presented in Fig. 7. Coarse grained molecular simulations of these

optimal candidates are then performed to commence another round of the active learning

cycle.

Figure 7: Active learning candidate selection. The expected improvement (EI) acquisition
function (Eqn. 12) is evaluated over for all unsampled members of the DXXX-OPV3-XXXD
family at values of the exploit-explore hyperparameter ξ over the range log10 ξ ∈ [−4, 0.4].
The blue points in the graph indicate which DXXX candidate maximizes the EI at each
value of ξ. In this illustrative example there are four candidates – DGGG, DEGA, DGLI,
and DALW – that maximize the EI over the range of ξ considered. The vertical line shows
the recommended value of ξ = 0.01 suggested in literature,69,76 which would result in the
selection of only DEGA as the next molecule to simulate. In our approach, we select all
four of the molecules DGGG, DEGA, DGLI, and DALW that maximize EI over the entire
range of ξ considered as the next best candidates to simulate in parallel in the next round
of coarse-grained molecular simulations.

2.2.5 Hyperparameter optimization

The dimensionality d of the VAE latent space embedding and bandwidth γ of the GPR kernel

are tunable hyperparameters to be optimized during each cycle of the active learning loop.

We perform simultaneous tuning of d and γ during each round by creating 50 embeddings

of all 8,000 DXXX-OPV3-XXXD molecules into the VAE latent space zi ∼ N (µi,σi) ∈ Rd,

each employing different realization of random numbers to sample from the latent space

Gaussian for each point, for d = [3, 10]. We then optimize γ for each embedding over the

range γ = [0.001, 100] using a line search followed by Nelder-Mead optimization to maximize

the GPR accuracy under cross-validation. We employ leave-one-out cross-validation (LOO-
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CV) for the first five cycles of the active learning, and then 5-fold CV for subsequent rounds

due to the high cost of LOO-CV for larger quantities of samples. The best performing VAE

embedding and associated optimal d and γ are adopted for the remainder of the current

active learning cycle.

2.2.6 Stop criteria

We cycle around the active learning loop until the GPR surrogate model no longer improves

with the collection of additional training data. A number of stopping criterion for active

learning have been proposed,77–82 but in this work we monitor and define convergence us-

ing the stabilizing predictions (SP) method that evaluates performance based on unlabeled

data81 and the performance difference (PD) method that considers the labeled examples.83

The SP method examines the predictions of consecutive models at each iteration of the ac-

tive learning procedure on a randomly selected set of 500 points, called the stop set, which

is held constant throughout the active learning. We measure the difference in the regression

predictions between subsequent rounds using the average Bhattacharyya distance DB
84 be-

tween the posterior of consecutive GPR models over the stop set. Large differences in DB

indicate the model is continuing to update the GPR posterior, whereas small values indicate

that the surrogate model predictions have stabilized.

The PD method is used to evaluate model performance by 5-fold CV of the R2 score over

the accumulated labeled samples collected to date within each round of active learning. A

plateau in the R2 indicates that additional observations result in only marginal improvements

to the GPR fit.83 A caution in assessing convergence using labeled data is that these data

may not be representative of the data as a whole.78,85 These concerns are mitigated in our

application since our initial data set comprises a set of randomly selected peptides to initialize

the active learning procedure and we collect up to four new data points each round across

the exploit-explore spectrum to assure broad sampling of chemical space.
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2.3 Nonlinear manifold learning of assembly pathways

We employ diffusion maps as a manifold learning approach to identify the low-dimensional

assembly pathways by which the various DXXX-OPV3-XXXD molecules self-assemble into

the terminal aggregates. We have previously described the application of diffusion maps to

self-assembling systems in Refs.61,86–88 In brief, we compute a distance metric d(i, j) between

each pair of interaction graphs i and j harvested from each frame of each molecular simulation

trajectory. A number of graph kernels at varying levels of sophistication and abstraction have

been proposed to measure the similarity between pairs of graphs.89–93 We follow the approach

of Reinhart et al. who employed graphlet decompositions as a diffusion map distance metric

to analyze colloidal crystallization.94 This approach featurizes a graph by enumerating all

topologically unique subgraphs (“graphlets”) with associated node permutations (“orbits”)

within the network up to a certain subgraph size (usually up to five vertices), and creating

a vector of orbit counts for each vertex in our graph.60,89,94 The vector of orbit counts at

each vertex is reweighted to account for over-counting of the smaller graphlets contained in

the larger ones (i.e., counts of graphlets comprising two vertices are necessarily contained

in counts of graphlets comprising three or more vertices), averaged over all vertices in the

graph, and normalized to unit length. This vector represents a featurization of the graph that

is permutationally invariant to vertex labeling, and the L2-norm between pairs of vectors

defines the graph kernel d(i, j) used to evaluate pairwise distances between our graphical

representations of the configurational state of the molecular system.

Diffusion maps then proceed by applying a Gaussian kernel to construct the convolved

similarity matrix,

Ai,j = exp

(
− (d(i, j)α)2

2ε

)
, (14)

where the kernel bandwidth ε controls the hop size of the random walk and can be auto-

matically tuned based on the distribution of the Ai,j.61,87,95 The use of the hyperparameter

α ∈ (0, 1] was proposed by Wang et al. within a density-adaptive extension of diffusion maps
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that greatly improves the performance of diffusion maps in applications to systems with large

differences in the density of points in the high-dimensional space.96 For α = 1 we recover

standard diffusion maps; for α → 0 the pairwise distances become increasingly similar and

large fluctuations in the density of points in the high-dimensional space are smoothed out.

Adopting the tuning procedure proposed in Ref.96 we adopt α = 0.15.

The A matrix is row normalized to create the right stochastic Markov transition matrix,

M = D−1A, (15)

Where D is a diagonal matrix of the row sums of A.

Di,j =
N∑
j=1

Ai,j. (16)

The matrix element M t
i,j = pt(i, j) can interpreted as the probability pt(i, j) of hopping from

point i to point j in t steps of the discrete random walk.95,97 Diagonalization of M produces

an ordered set of eigenvectors and eigenvalues {(ψ1 = ~1, λ1 = 1), (ψ2, λ2), (ψ3, λ3), ...} with

λ1 = 1 ≥ λ2 ≥ λ3 ≥ . . .. The first pair (ψ1 = ~1, λ1 = 1) is trivial and associated with the

stationary distribution of the random walk.95 The higher order eigenvectors are associated

with a hierarchy of increasingly fast relaxation modes of the random walk. Dimensionality

reduction is achieved by identifying a gap in the eigenvalue spectrum after the λk+1 to

resolve a subspace of slowly relaxing dynamical modes {ψ2, ψ3, . . . , ψk+1}. The diffusion

map embedding is the projection of the ith interaction graph into the ith component of the

top k non-trivial eigenvectors,

i 7→ (ψ2(i), ψ3(i), ..., ψk+1(i)). (17)

We implement this formalism using the memory and compute efficient pivot diffusion

map approach that reduces the scaling in the number of points N from O(N2) to O(N ×n),
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where n << N is the number of so-called “pivot points” employed.98 This approach enables

the application of diffusion maps to large data sets by performing on-the-fly definition of the

n pivot points defining an approximate spanning tree over the high-dimensional data and

which are used to support interpolative embeddings of the remaining points.

3 Results and Discussion

3.1 Active learning identification of optimal candidates

The complete DXXX-OPV3-XXXD family comprises 203 = 8,000 members generated by all

permutations of placing each of the 20 natural amino acids within the XXX tripeptide. Prior

to conducting active learning we filtered this ensemble to eliminate a subset of candidates

containing amino acids known and expected to produce undesired assembly behaviors.39

Specifically, we reduced our search space to the 113 = 1331 candidates in the set defined

by X ∈ {Ala,Gly,Glu, Ile,Leu,Met,Phe,Trp,Tyr,Val,Asp} to avoid charged and/or polar

amino acids expected to interfere with low-pH triggered assembly31 and focus on those

residues that have expressed good assembly behavior in previous experimental work.22,99–101

We perform active learning over DXXX-OPV3-XXXD sequences following the four-part

protocol – molecular simulation, VAE latent space embedding, GPR surrogate model con-

struction, optimal selection of next candidates – described in Section 2.2 and illustrated in

Fig. 2. We seeded the search by conducting coarse-grained molecular dynamics simulations

of 90 randomly selected members of the family using the simulation protocol detailed in Sec-

tion 2.1. This initial broad sampling over the candidate space provides the GPR surrogate

model with diverse training data that enables it to identify more- and less-promising regions

of the latent space prior to making any predictions. We term this initial round of active

learning as Round 0. We conduct 25 additional rounds of active learning (Rounds 1-25)

selecting up to four additional molecules for simulation during each pass. This resulted in a

sampling a total of N = 186 molecules (2.3% of the 8,000-member complete family; 14.0% of
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the 1331-member chemically restricted family) and a cumulative 558 µs of simulation time.

The particular candidates selected and sampled in each round are listed in Table S1 in the

Supporting Information.

Sampling was terminated by tracking the performance difference (PD) and stabilizing

predictions (SP) methods (Section 2.2.6).81,83 The PDmethod 5-fold cross validationR2 score

commences at a reasonably high value of ∼68% – likely due to the relatively large and diverse

N = 90 initial candidates considered, and plateaus to a quite high value of ∼78% by Round

18 (Fig. 8a). The SP method reveals a Bhattacharyya distance between successive GPR

posteriors of DB > 10 over the first 13 rounds, indicating that the additional training data

incorporated into the GPR surrogate model are substantially altering its predictions. After

Round 14, the Bhattacharyya distance plateaus to DB∼ 2.5 indicating that the surrogate

model has stabilized. Rounds 18-25 are therefore proceeding with a stable GPR model

and the exploitation candidates identified by the expected improvement acquisition function

(Section 2.2.4) furnish the best predictions of the top performing molecules that did not

happen to have already been sampled in previous rounds.

A B

Figure 8: Tracking of active learning stop criteria. (a) The performance difference (PD)
method 5-fold cross validation R2 score stabilizes at R2 ∼ 78% by Round 18. (b) The stabi-
lizing predictions (SP) method Bhattacharyya distance between successive GPR posteriors
plateaus close to zero at DB ∼ 2.5 after Round 13. Values are reported using a moving
average with a window size of three, as recommended in Ref.81 .

We present in Table 1 the top performing molecules among the 186 that were simulated
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within our active learning protocol. We report their fitness fi = κi corresponding to the mean

number of π-core–π-core contacts per molecule in the terminal self-assembled aggregates

(Section 2.2.1), the round of active learning in which they were sampled, and whether they

have been previously explored by experiment or simulation. Additional molecules that have

been previously identified as high performing by experiment and simulation are also presented

for comparison. The list of all 1,331 DXXX-OPV3-XXXD molecules in the family with

fitness predictions and rankings assigned by the terminal GPR surrogate model is presented

in Table S2. There is very good agreement between the numerical simulation results and

the GPR model predictions over the training set of 186 molecules for which measurement

data exist: the calculated and predicted values of fi = κi possess a Pearson correlation

coefficient of ρPearson = 0.90 (p-value = 4×10−68) and the calculated and predicted rankings

possess a Spearman correlation coefficient of ρSpearman = 0.86 (p-value = 1×10−54). The

agreement is not perfect due to our incorporation of uncertainty estimates in our noisy

fitness measurements into GPR training such that the model predictions fall within the

error bars of our simulations (Section 2.2.3).

Trends apparent in the active learning-ranking of the tripeptides in terms of amino acid

composition and sequence are coincident with aspects of existing understanding, but also

suggest new unexplored amino acid sequences as good putative candidates. The bulky aro-

matic residues F, W, and Y tend to disfavor good assembly behaviors,22 with the large

size of these residues impeding good side chain packing and obstructing co-facial stack-

ing of the cores (particularly in the X3 position of DX1X2X3-OPV3-X3X2X1D), and their

aromatic character disrupting the formation of linear aggregates with in-register stacking

of the π-cores by introducing favorable aromatic stacking between the π-cores and peptide

wings. These trends are expressed in the low ranking of molecules containing bulky aromatic

residues (e.g., DFGG (65), DFAV (85), DFAG (93), DIAG (102), DFAA (111), DFAF(147))

compared to those with smaller hydrophobic side chains (e.g., DVAG (19), DAAG (33),

DGAG (45)). The active learning protocol also identifies as highly ranked a number of
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Table 1: Top 15 DXXX-OPV3-XXXD molecules identified by the active learning
protocol. Additional molecules previously studied in simulation and experiment
are also shown for comparison.

Rank (out of 186) Molecule (DXXX) κ Discovery round Previously known?
1 DEAA 6.06 ± 0.02 1 N
2 DDAI 6.03 ± 0.02 0 N
3 DIAM 6.01 ± 0.02 17 N
4 DVAA 5.95 ± 0.03 9 N
5 DAAV 5.92 ± 0.03 19 N
6 DGLG 5.92 ± 0.02 20 N
7 DAEA 5.92 ± 0.02 25 N
8 DAGI 5.90 ± 0.01 21 N
9 DGIG 5.88 ± 0.02 25 N
10 DEAL 5.88 ± 0.01 23 N
11 DGGM 5.87 ± 0.04 0 N
12 DLAV 5.86 ± 0.02 16 N
13 DGDL 5.85 ± 0.03 0 N
14 DGIA 5.80 ± 0.04 15 N
15 DAGL 5.79 ± 0.02 19 N
...

...
...

...
...

19 DVAG 5.73 ± 0.01 22 Exp (Ref.22)
...

...
...

...
...

33 DAAG 5.62 ± 0.01 2 Exp (Ref.22)
...

...
...

...
...

45 DGAG 5.54 ± 0.03 0 Sim (Ref.39); Exp (Ref.22)
...

...
...

...
...

65 DFGG 5.33 ± 0.03 0 Exp (Ref.22)
...

...
...

...
...

85 DFAV 5.09 ± 0.02 0 Exp (Ref.22)
...

...
...

...
...

93 DFAG 4.98 ± 0.01 0 Sim (Refs.17,29); Exp (Ref.22)
...

...
...

...
...

102 DIAG 4.86 ± 0.01 2 Exp (Ref.22)
...

...
...

...
...

111 DFAA 4.78 ± 0.01 0 Exp (Ref.22)
...

...
...

...
...

147 DFAF 4.29 ± 0.02 21 Exp (Ref.22)

previously unknown candidates enriched in smaller hydrophobic residues. Interestingly, a

number of highly ranked candidates contain an M residue in the X3 position (e.g., DIAM

(3), DGGM (11)). Methionene-containing DXXX-OPV3-XXXD molecules have been com-
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pletely unexplored due, in part, to the expectation that a thioether group would likely disfa-

vor hydrophobic association. Our calculations predict these candidates to possess excellent

assembly behaviors and suggest them as novel molecules for experimental investigation.

3.2 Manifold learning of assembly pathways

The active learning protocol considers only the terminal 50 ns of the 3,000 ns coarse-grained

molecular dynamics trajectories to identify DXXX-OPV3-XXXDmolecules that form desired

pseudo-1D linear aggregates. Having completed the active learning process, we subsequently

analyze the ensemble of N = 186 molecular simulation trajectories to provide molecular-level

understanding of the assembly pathways and mechanisms and furnish design precepts for the

observed assembly behaviors as a function of tripeptide sequence.

We hypothesize that the molecular assembly trajectories proceed through configurational

phase space over a low-dimensional manifold. We determine this low-dimensional manifold

by performing diffusion map manifold learning over the trajectory ensemble.95,97 Each frame

of each molecular simulation is represented as an interaction graph with vertices V and edges

E defined using the optical distance metric (Section 2.2.1). We subsample each trajectory

keeping every 20th point and then run diffusion maps on the composite data set of 558,000

graphs as detailed in Section 2.3. Diffusion maps then produce a nonlinear projection of this

graph ensemble into a low-dimensional space in which graphs sharing a similar structure of

edges are embedded close together, and dissimilar graphs embedded far apart. (We empha-

size that this low-dimensional embedding represents a nonlinear manifold residing within

the configurational space of interaction graphs and is completely independent from the VAE

latent space embedding of the chemical space of XXX tripeptides.) We trace assembly tra-

jectories over this graph embedding to identify DXXX-OPV3-XXXD molecules that follow

similar and dissimilar dynamical assembly pathways and terminal states.

The diffusion map eigenvalue spectrum possesses a spectral gap after the third non-

trivial eigenvalue, motivating 3D embeddings into the three leading eigenvectors {ψ2, ψ3, ψ4}.
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Further, the ψ2−ψ3 projection defines a curved, relatively thin manifold indicating that these

two embedding dimensions are correlated (Fig. S1).102 Accordingly, without too much loss

of information we drop ψ3 and construct visually simpler 2D ψ2 − ψ4 embeddings that we

present in Fig. 9. In Fig. 9a we present the composite embedding of all 558,000 simulation

snapshots. We find ψ2 to be moderately strongly correlated with the average number of per

molecule π-core–π-core contacts κ (ρ(ψ2, κ) = 0.78, p-value < 1×10−15), and ψ4 with the

mass averaged cluster size of the system Mz (ρ(ψ4,Mz) = 0.62, p-value < 1×10−15).103

In Fig. 9b-d we highlight the assembly trajectories for three selected molecules: DVAA-

OPV3-AAVD as a good assembler with κ = (5.85 ± 0.03) and rank = 4/186, DGEG-

OPV3-DGEG as an intermediate assembler with κ = (5.02 ± 0.02) and rank = 89/186,

and DWWI-OPV3-IWWD as a poor assembler with κ = (3.74 ± 0.01) and rank = 175/186

(Table S2). These three examples possess assembly pathways over the manifold that are

prototypical of three classes of assembly behavior. All pathways commence in the top-left

of the manifold at (ψ2 ≈ −1.0, ψ4 ≈ 1.8) corresponding to an approximate monomeric

dispersion. Good assemblers such as DVAA-OPV3-AAVD follow pathways that travel along

the lower perimeter of the manifold and terminate in the top-right corner (ψ2 ≈ −1.5, ψ4 ≈

1.8) → (ψ2 ≈ −1.5, ψ4 ≈ −1.5) → (ψ2 ≈ 1.5, ψ4 ≈ −1.5) → (ψ2 ≈ 1.5, ψ4 ≈ 1.5).

The configurations in the top-right corner comprise pseudo-1D aggregates with good in-

register stacking between the π-cores and large values of κ. Intermediate assemblers such as

DGEG-OPV3-DGEG follow similar pathways that traverse the left and bottom perimeter,

but terminate in the bottom-right region of the manifold at (ψ2 ≈ 1.5, ψ4 ≈ −1.5). This

bottom-right region comprises loosely connected pseudo-1D aggregates which fail to form a

globally connected pseudo-1D structure and possess intermediate values of κ. Lastly, poor

assemblers such as DWWI-OPV3-IWWD follow pathways that travel along the top of the

manifold (ψ2 ≈ −1.5, ψ4 ≈ 1.0)→ (ψ2 ≈ 0.5, ψ4 ≈ 1.0) and terminate within the bulk of the

manifold (ψ2 ≈ 0.0, ψ4 ≈ −0.5) corresponding to disordered aggregates with poor in register

stacking and smaller κ.
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Figure 9: Diffusion map embeddings into ψ2−ψ4 of theN = 186 DXXX-OPV3-XXXD molec-
ular simulation trajectories. (a) Composite embedding of all 558,000 simulation snapshots.
Each point represents a snapshot from one of the simulation trajectories and points are col-
ored by the total number of edges in the corresponding molecular interaction graph (Section
2.2.1). Temporal assembly courses of selected molecules over the 2D manifold where points
are colored by simulation time: (b) DVAA-OPV3-AAVD (good assembler: κ = 5.85 ± 0.03,
rank = 4/186), (c) DGEG-OPV3-GEGD (intermediate assembler: κ = 5.02 ± 0.02, rank =
89/186), (d) DWWI-OPV3-IWWD (poor assembler: κ = 3.74 ± 0.01, rank = 175/186).

3.3 Unsupervised spectral clustering into assembly classes

The diffusion map embedding of the assembly trajectories presents a means to identify groups

of molecules with similar assembly behaviors and extract design precepts to promote good

assembly behavior. We map each of the N = 186 DXXX-OPV3-XXXD molecules in the

diffusion map embedding to a single 3D point by averaging over the locations of the final

50 ns of simulation data in the space of the top three nontrivial diffusion map eigenvectors
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{ψi}4i=2. We then perform agglomerative hierarchical clustering using Ward’s method.104 We

cut the resulting dendrogram to partition in the molecules into three clusters (Fig. S2), and

illustrate the clustering of the N = 186 molecules within the ψ2−ψ4 diffusion map embedding

in Fig. 10. The three clusters reveal a natural categorization into good, intermediate, and

poor assemblers: (i) the green cluster of points in the top-right of the embedding comprises

the good assemblers that form pseudo-1D linear stacks, (ii) the red cluster located in the

bottom-right of the manifold contains intermediate assemblers that form loosely connected

small linear aggregates, and (iii) the orange cluster located in the bulk of the manifold that

forms disordered and disconnected clusters with poor π-core stacking. We then propagated

the cluster labels defined over these N = 186 molecules to the remaining (1,331 - 186) =

1,145 molecules by performing a nearest-neighbor assignation based on distances within the

VAE latent space in the terminal round of active learning (Section 2.2.2). A listing of the

cluster assignations of each of the 1,331 molecules is provided in Table S3.

Our classification of the 1,331 molecules allows us to perform a statistical analysis of the

enrichment or depletion of amino acid residues in good assemblers relative to intermediate

or poor assemblers at each of the the three Xi positions in the DX1X2X3-OPV3-X3X2X1D

sequence (Fig. 11). A fuller analysis would account for the complete tripeptide sequence

to consider the effects of interactions with the other amino acids, but this simpler one-

body analysis is both interpretable and illuminating. Drawing a significance cutoff at 1.5×

enrichment or depletion (p-value = 5×10−21, one-tailed Fisher’s exact test), within good

assemblers at the X1 position we observe significant enrichment in {A,G, I, L, V } residues

and depletion in {F,W}. At X2, we observe an enrichment in {G, I, L} and impoverishment

in {F, V,W}. Finally, X3 is enriched in {G, I, L, V } and impoverished in {W,Y }.

First considering the depleted amino acids, the largest hydrophobic residue W is disfa-

vored in good assemblers at all positions. This can be understood as these bulky aromatic

side chains possessing favorable π-stacking interactions with the π-cores, thereby disrupting

π-core–π-core stacking. The W residue is most strongly disfavored in the core-adjacent X3
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position, where its bulk and proximity to the core can most effectively disrupt good co-facial

core stacking. These observations are consistent with the experimental results in Ref.22

where smaller UV-vis spectral shifts were observed upon assembly for molecules containing

aromatic residues. Of the remaining two aromatic amino acids, F is similarly disfavored,

albeit not to the same degree, but the picture for Y is surprisingly nuanced. Y is moderately

disfavored at X1 and strongly disfavored at X3, but at X2 it is neither favored nor disfavored.

The latter observation was unanticipated, and we currently lack an understanding for why

this should be so. This analysis illuminates how location within the tripeptide acts in concert

with the inherent physicochemical attributes of an amino acid to modulate its effect.

In regards to the enriched amino acids, the smaller hydrophobic residues G, I, and L are

strongly favored at all positions, with I particularly favored in the X3 position. This prefer-

ence can be understood as the smaller aliphatic residues enabling closer packing between the

peptide wings compared to their bulkier counterparts and their absence of aromatic character

reducing interference in the co-facial stacking of π-cores. Residue A is moderately favored

at X1 and X2, but neither favored nor disfavored at X3. Contrariwise, V is moderately to

strongly favored at X1 and X3, but moderately disfavored at X2.

Finally, there is no strong preferences for residues D, E, and M at any of the three

positions, with the exception of a moderate favorability for M at position X3.

4 Conclusions

The primary goal of this work was to employ molecular simulation to identify members

of the DXXX-OPV3-XXXD oligopeptide family exhibiting promising assembly behaviors

into pseudo-1D nanoaggregates with good optoelectronic properties, and to discover design

precepts for the good assemblers. Trial-and-error exploration of the full chemical space

is computationally and experimentally intractable, motivating our use of techniques from

optimal experimental design and deep representational learning to efficiently traverse the
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Figure 11: Residue enrichment analysis of each position Xi in DX1X2X3-OPV3-X3X2X1D
within molecules classified as good assemblers relative to those classified as intermediate or
poor assemblers. Good assemblers are enriched in amino acids residing below the dashed
black line and depleted in those residing above it. Dashed green and red lines show boundaries
for 1.5× and 2× differential enrichment and depletion.

space of XXX tripeptide sequences and minimize the number of expensive molecular simu-

lations required to identify the top candidates. Employing a combination of coarse-grained

molecular simulation, variational autoencoders, Gaussian process regression, and Bayesian

optimization, we define an iterative active learning protocol that constructs surrogate models

of assembly behavior based on the simulation data collected to date, and uses these models

to optimally direct the next round of simulations. The loop is terminated when the surrogate

model ceases to improve with additional simulation data and we can reliably predict the top

performing molecules. Using this platform we compute a converged rank ordering of the

DXXX-OPV3-XXXD oligopeptides in terms of assembly quality after directly simulating

only 2.3% of all possible oligopeptide sequences. The calculated rankings are consistent with

existing understanding of what constitutes good and bad sequences for assembly, but also

reveals new promising candidate molecules as superior assemblers that have not previously

been considered. Our ranked list presents an inexpensive filtration of the complete DXXX-

OPV3-XXXD sequence space to direct expensive experimental synthesis and characterization

efforts towards the most promising candidate molecules.
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To provide context for the extent of the potential savings in time and labor afforded by

the use of a computational model as opposed to direct experimental assessment, we estimate

that experimentally assaying the top 25 candidates determined by this work would take only

∼2 months whereas performing active learning with direct experimental feedback instead of

computation would require ∼16 months. Similarly, we can contextualize the value of the

active learning protocol by observing that our predictions of the top candidates converged

after sampling only 186 (2.3%) of the 8,000 possible molecules, whereas a random search

protocol would require evaluation of 1645 molecules (21%) in order to stand a 90% chance

of discovering just a single candidate in the top 10 of our rank ordered list.

A subsequent analysis of the molecular simulation trajectories reveals a low-dimensional

manifold within the high-dimensional configurational space over which assembly proceeds.

Clustering of the simulation trajectories within this space reveals a natural partitioning of

the DXXX-OPV3-XXXD family into good, intermediate, and poor assemblers. Statistical

analysis of these classes reveals the good assemblers to be enriched in small and intermediate-

sized hydrophobic residues, depleted in large aromatic residues, and that Asp, Glu, and

Met do not strongly influence the quality of assembly. The one exception to the latter

result is that Met in the X position closest to the π-core does moderately to strongly favor

assembly. These design precepts provide understanding of the rankings established by the

active learning protocol.

In sum, this work offers a comprehensive investigation of the assembly landscape of the

DXXX-OPV3-XXXD family of π-conjugated peptides using Bayesian optimal experimental

design to guide expensive coarse-grained molecular simulations over microsecond time scales.

Our calculations efficiently furnish a rank ordering of the DXXX-OPV3-XXXD and identify

a small number of top-performing candidates. While these predictions are only as good

as the accuracy of the (coarse-grained) molecular model, they are consistent with existing

physicochemical understanding, and can be viewed as a coarse computational filtration of the

complete sequence space that can guide subsequent computation and experiment towards
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the most promising candidates. Ongoing experimental work will attempt to synthesize and

test the optoelectronic properties of the candidates in this work, while future computational

studies will generalize the approach to D(X)n-Π-(X)nDmolecules by extending the considered

chemical space to include different Π cores, such as perylenediimide (PDI) or oligothiophene

(OT), and varying the length of the peptides. Our platform is also generically extensible

to the design of other peptide and peptide-like systems, including antimicrobial peptides,

cell-penetrating peptides, intrinsically disordered proteins, and peptoids, where the efficient

traversal of chemical space, identification of small numbers of top-performing candidates,

and exposure of comprehensible design precepts are prioritized.

Data Availability

The coarse-grained molecular simulation trajectories of the self-assembly of the 186 DXXX-

OPV3-XXXD molecules conducted in this work are hosted for free public download at

the Materials Data Facility,105 a project affiliated with the NIST Center for Hierarchical

Materials Design106,107 at http://dx.doi.org/10.18126/xqiz-hzc2. Python 3 Jupyter

notebooks implementing our active search procedures are available on GitHub at https:

//github.com/KirillShmilovich/ActiveLearningCG.

Supporting Information

SI.pdf lists the molecules evaluated at each iteration of the active learning, provides the

diffusion map embedding into ψ2 − ψ3, and reports the spectral clustering dendrogram of

all 186 sampled molecules. TableS2.csv lists all 1,331 DXXX-OPV3-XXXD molecules with

fitness predictions and rankings assigned by the terminal GPR surrogate model. TableS3.csv

lists the cluster assignations into good, intermediate, and poor assemblers of each of the

1,331 DXXX-OPV3-XXXD molecules. sim.zip provides all input files and scripts necessary

to reproduce the simulation trajectories.
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