DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas

Abstract

The increasing need to demonstrate the correctness of computer simulations has highlighted the importance of benchmarks. We define in this paper a representative simulation case to study low-temperature partially-magnetized plasmas. Seven independently developed particle-in-cell codes have simulated this benchmark case, with the same specified conditions. The characteristics of the codes used, such as implementation details or computing times and resources, are given. First, we compare at steady-state the time-averaged axial profiles of three main discharge parameters (axial electric field, ion density and electron temperature). We show that the results obtained exhibit a very good agreement within 5% between all the codes. As E x B discharges are known to cause instabilities propagating in the direction of electron drift, an analysis of these instabilities is then performed and a similar behaviour is retrieved between all the codes. A particular attention has been paid to the numerical convergence by varying the number of macroparticles per cell and we show that the chosen benchmark case displays a good convergence. Detailed outputs are given in the supplementary data, to be used by other similar codes in the perspective of code verification.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3];  [1]; ORCiD logo [4];  [5]; ORCiD logo [2]; ORCiD logo [6]; ORCiD logo [7];  [8]; ORCiD logo [9];  [10]; ORCiD logo [11]; ORCiD logo [4];  [12]
  1. PSL Research Univ., Palaiseau (France)
  2. Univ. of Toulouse (France)
  3. RadiaSoft LLC, Boulder, CO (United States)
  4. CERFACS, Toulouse (France)
  5. Ruhr Univ., Bochum (Germany)
  6. Texas A & M Univ., College Station, TX (United States)
  7. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  8. Princeton Univ., NJ (United States)
  9. Univ. of Saskatchewan, Saskatoon, SK (Canada)
  10. Univ. of Saskatchewan, Saskatoon, SK (Canada); Univ. of Alberta, Edmonton, AB (Canada)
  11. PSL Research Univ., Palaiseau (France); Safran Aircraft Engines, Vernon (France)
  12. CERFACS, Toulouse (France); Safran Aircraft Engines, Vernon (France)
Publication Date:
Research Org.:
Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Texas A & M Univ., College Station, TX (United States). Texas A & M Engineering Experiment Station
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES); US Air Force Office of Scientific Research (AFOSR); Agence Nationale de la Recherche; German Research Foundation (DFG)
OSTI Identifier:
1660946
Alternate Identifier(s):
OSTI ID: 1572876
Grant/Contract Number:  
SC0019045; A0032B10157; SFB-TR 87; FA9550-18-1-0132; FA9550-15-1-0226; ANR-16-CHIN-0003-01
Resource Type:
Accepted Manuscript
Journal Name:
Plasma Sources Science and Technology
Additional Journal Information:
Journal Volume: 28; Journal Issue: 10; Journal ID: ISSN 1361-6595
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ExB discharges; benchmark; particle-in-cell; electron drift instability

Citation Formats

Charoy, T., Boeuf, J. P., Bourdon, A., Carlsson, J. A., Chabert, P., Cuenot, B., Eremin, D., Garrigues, L., Hara, K., Kaganovich, I. D., Powis, A. T., Smolyakov, A., Sydorenko, D., Tavant, A., Vermorel, O., and Villafana, W. 2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas. United States: N. p., 2019. Web. doi:10.1088/1361-6595/ab46c5.
Charoy, T., Boeuf, J. P., Bourdon, A., Carlsson, J. A., Chabert, P., Cuenot, B., Eremin, D., Garrigues, L., Hara, K., Kaganovich, I. D., Powis, A. T., Smolyakov, A., Sydorenko, D., Tavant, A., Vermorel, O., & Villafana, W. 2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas. United States. https://doi.org/10.1088/1361-6595/ab46c5
Charoy, T., Boeuf, J. P., Bourdon, A., Carlsson, J. A., Chabert, P., Cuenot, B., Eremin, D., Garrigues, L., Hara, K., Kaganovich, I. D., Powis, A. T., Smolyakov, A., Sydorenko, D., Tavant, A., Vermorel, O., and Villafana, W. Thu . "2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas". United States. https://doi.org/10.1088/1361-6595/ab46c5. https://www.osti.gov/servlets/purl/1660946.
@article{osti_1660946,
title = {2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas},
author = {Charoy, T. and Boeuf, J. P. and Bourdon, A. and Carlsson, J. A. and Chabert, P. and Cuenot, B. and Eremin, D. and Garrigues, L. and Hara, K. and Kaganovich, I. D. and Powis, A. T. and Smolyakov, A. and Sydorenko, D. and Tavant, A. and Vermorel, O. and Villafana, W.},
abstractNote = {The increasing need to demonstrate the correctness of computer simulations has highlighted the importance of benchmarks. We define in this paper a representative simulation case to study low-temperature partially-magnetized plasmas. Seven independently developed particle-in-cell codes have simulated this benchmark case, with the same specified conditions. The characteristics of the codes used, such as implementation details or computing times and resources, are given. First, we compare at steady-state the time-averaged axial profiles of three main discharge parameters (axial electric field, ion density and electron temperature). We show that the results obtained exhibit a very good agreement within 5% between all the codes. As E x B discharges are known to cause instabilities propagating in the direction of electron drift, an analysis of these instabilities is then performed and a similar behaviour is retrieved between all the codes. A particular attention has been paid to the numerical convergence by varying the number of macroparticles per cell and we show that the chosen benchmark case displays a good convergence. Detailed outputs are given in the supplementary data, to be used by other similar codes in the perspective of code verification.},
doi = {10.1088/1361-6595/ab46c5},
journal = {Plasma Sources Science and Technology},
number = 10,
volume = 28,
place = {United States},
year = {Thu Oct 17 00:00:00 EDT 2019},
month = {Thu Oct 17 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 50 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Simulation domain. x is the axial direction, y the (periodic) azimuthal direction. Black pointed dashed line ($x$$B_{max}$= 0.75 cm): position of maximum radial magnetic field. Green dashed line ($x_e$=2.4 cm): plane from which electrons are emitted uniformly along the azimuthal direction.

Save / Share:

Works referenced in this record:

Tutorial: Physics and modeling of Hall thrusters
journal, January 2017

  • Boeuf, Jean-Pierre
  • Journal of Applied Physics, Vol. 121, Issue 1
  • DOI: 10.1063/1.4972269

High power impulse magnetron sputtering discharge
journal, May 2012

  • Gudmundsson, J. T.; Brenning, N.; Lundin, D.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 30, Issue 3
  • DOI: 10.1116/1.3691832

Simulation benchmarks for low-pressure plasmas: Capacitive discharges
journal, January 2013

  • Turner, M. M.; Derzsi, A.; Donkó, Z.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4775084

Radiofrequency discharge benchmark model comparison
journal, February 1995


The effects of secondary electron emission on plasma sheath characteristics and electron transport in an ${\bf{E}}\times {\bf{B}}$ discharge via kinetic simulations
journal, December 2018

  • Tavant, Antoine; Croes, Vivien; Lucken, Romain
  • Plasma Sources Science and Technology, Vol. 27, Issue 12
  • DOI: 10.1088/1361-6595/aaeccd

Theory for the anomalous electron transport in Hall effect thrusters. I. Insights from particle-in-cell simulations
journal, May 2016

  • Lafleur, T.; Baalrud, S. D.; Chabert, P.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948495

Issues in the understanding of negative ion extraction for fusion
journal, June 2016


Nonlinear Development of the Beam-Cyclotron Instability
journal, May 1971


Kinetic properties of particle-in-cell simulations compromised by Monte Carlo collisions
journal, March 2006


Modeling of plasma transport and negative ion extraction in a magnetized radio-frequency plasma source
journal, January 2017


An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm
journal, August 2011


2D particle-in-cell simulations of the electron drift instability and associated anomalous electron transport in Hall-effect thrusters
journal, February 2017

  • Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdeněk
  • Plasma Sources Science and Technology, Vol. 26, Issue 3
  • DOI: 10.1088/1361-6595/aa550f

Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)
journal, March 2017

  • Anders, André
  • Journal of Applied Physics, Vol. 121, Issue 17
  • DOI: 10.1063/1.4978350

hypre: A Library of High Performance Preconditioners
book, April 2002

  • Falgout, Robert D.; Yang, Ulrike Meier; Goos, Gerhard
  • Computational Science — ICCS 2002: International Conference Amsterdam, The Netherlands, April 21–24, 2002 Proceedings, Part III
  • DOI: 10.1007/3-540-47789-6_66

Steady and unsteady flow simulations using the hybrid flow solver AVBP
journal, January 1999

  • Schoenfeld, Thilo; Rudgyard, Michael
  • AIAA Journal, Vol. 37
  • DOI: 10.2514/3.14333

Study of stationary plasma thrusters using two-dimensional fully kinetic simulations
journal, January 2004

  • Adam, J. C.; Héron, A.; Laval, G.
  • Physics of Plasmas, Vol. 11, Issue 1
  • DOI: 10.1063/1.1632904

On the <mml:math altimg="si89.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msub><mml:mrow><mml:mstyle mathvariant="double-struck"><mml:mi>F</mml:mi></mml:mstyle></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math>-linear relations of Mersenne Twister pseudorandom number generators
journal, June 2014


Characteristics and transport effects of the electron drift instability in Hall-effect thrusters
journal, January 2017

  • Lafleur, T.; Baalrud, S. D.; Chabert, P.
  • Plasma Sources Science and Technology, Vol. 26, Issue 2
  • DOI: 10.1088/1361-6595/aa56e2

Physics of a magnetic filter for negative ion sources. II. E × B drift through the filter in a real geometry
journal, November 2012

  • Boeuf, J. P.; Claustre, J.; Chaudhury, B.
  • Physics of Plasmas, Vol. 19, Issue 11
  • DOI: 10.1063/1.4768804

Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry
journal, August 2015


E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory
journal, June 2018

  • Boeuf, J. P.; Garrigues, L.
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5017033

Nonlinear structures and anomalous transport in partially magnetized E×B plasmas
journal, January 2018

  • Janhunen, Salomon; Smolyakov, Andrei; Chapurin, Oleksandr
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.5001206

Rotating Instability in Low-Temperature Magnetized Plasmas
journal, October 2013


Appropriate use of the particle-in-cell method in low temperature plasmas: Application to the simulation of negative ion extraction
journal, December 2016

  • Garrigues, L.; Fubiani, G.; Boeuf, J. P.
  • Journal of Applied Physics, Vol. 120, Issue 21
  • DOI: 10.1063/1.4971265

Improved long-period generators based on linear recurrences modulo 2
journal, March 2006

  • Panneton, François; L'ecuyer, Pierre; Matsumoto, Makoto
  • ACM Transactions on Mathematical Software, Vol. 32, Issue 1
  • DOI: 10.1145/1132973.1132974

Radio-frequency biasing of ion acceleration grids
journal, December 2018


Dispersion relations of electron density fluctuations in a Hall thruster plasma, observed by collective light scattering
journal, March 2009

  • Tsikata, S.; Lemoine, N.; Pisarev, V.
  • Physics of Plasmas, Vol. 16, Issue 3
  • DOI: 10.1063/1.3093261

A two-dimensional (azimuthal-axial) particle-in-cell model of a Hall thruster
journal, February 2014

  • Coche, P.; Garrigues, L.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4864625

High-frequency electron drift instability in the cross-field configuration of Hall thrusters
journal, October 2006

  • Ducrocq, A.; Adam, J. C.; Héron, A.
  • Physics of Plasmas, Vol. 13, Issue 10
  • DOI: 10.1063/1.2359718

Physics of a magnetic filter for negative ion sources. I. Collisional transport across the filter in an ideal, 1D filter
journal, November 2012

  • Boeuf, J. P.; Chaudhury, B.; Garrigues, L.
  • Physics of Plasmas, Vol. 19, Issue 11
  • DOI: 10.1063/1.4768676

Negative ion extraction via particle simulation for fusion: critical assessment of recent contributions
journal, November 2016


Electron sub-cycling in particle simulation of plasma
journal, August 1982


Modulated Electron Cyclotron Drift Instability in a High-Power Pulsed Magnetron Discharge
journal, May 2015


Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations
journal, June 2018

  • Lafleur, T.; Martorelli, R.; Chabert, P.
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5017626

Evolution of the electron cyclotron drift instability in two-dimensions
journal, August 2018

  • Janhunen, Salomon; Smolyakov, Andrei; Sydorenko, Dmytro
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5033896

Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP
journal, November 1999

  • Schonfeld, Thilo; Rudgyard, Michael
  • AIAA Journal, Vol. 37, Issue 11
  • DOI: 10.2514/2.636

Collisions in a Plasma of Finite-Size Particles
journal, January 1970


Longitudinal waves in a perpendicular collisionless plasma shock: I. Cold ions
journal, December 1970


Physics, simulation and diagnostics of Hall effect thrusters
journal, November 2008


Plasma oscillations in Hall thrusters
journal, January 2001


Comparison of six simulation codes for positive streamers in air
journal, September 2018

  • Bagheri, B.; Teunissen, J.; Ebert, U.
  • Plasma Sources Science and Technology, Vol. 27, Issue 9
  • DOI: 10.1088/1361-6595/aad768

The effect of alternative propellants on the electron drift instability in Hall-effect thrusters: Insight from 2D particle-in-cell simulations
journal, June 2018

  • Croes, Vivien; Tavant, Antoine; Lucken, Romain
  • Physics of Plasmas, Vol. 25, Issue 6
  • DOI: 10.1063/1.5033492

Hall thruster plasma fluctuations identified as the E×B electron drift instability: Modeling and fitting on experimental data
journal, August 2013

  • Cavalier, J.; Lemoine, N.; Bonhomme, G.
  • Physics of Plasmas, Vol. 20, Issue 8
  • DOI: 10.1063/1.4817743

Xorshift RNGs
journal, January 2003


An Energy- and Charge-conserving, Implicit, Electrostatic Particle-in-Cell Algorithm
text, January 2011


Works referencing / citing this record:

Self-organized standing waves generated by AC-driven electron cyclotron drift instabilities
journal, December 2019

  • DesJardin, I. M.; Hara, K.; Tsikata, S.
  • Applied Physics Letters, Vol. 115, Issue 23
  • DOI: 10.1063/1.5131019

Physics of E  ×  B discharges relevant to plasma propulsion and similar technologies
journal, December 2020

  • Kaganovich, Igor D.; Smolyakov, Andrei; Raitses, Yevgeny
  • Physics of Plasmas, Vol. 27, Issue 12
  • DOI: 10.1063/5.0010135