DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction

Abstract

The discovery of high-performing and stable materials for sustainable energy applications is a pressing goal in catalysis and materials science. Understanding the relationship between a material’s structure and functionality is an important step in the process, such that viable polymorphs for a given chemical composition need to be identified. Machine-learning-based surrogate models have the potential to accelerate the search for polymorphs that target specific applications. Herein, we report a readily generalizable active-learning (AL) accelerated algorithm for identification of electrochemically stable iridium oxide polymorphs of IrO2 and IrO3. The search is coupled to a subsequent analysis of the electrochemical stability of the discovered structures for the acidic oxygen evolution reaction (OER). Structural candidates are generated by identifying all 956 structurally unique AB2 and AB3 prototypes in existing materials databases (more than 38000). Next, using an active learning approach, we find 196 IrO2 polymorphs within the thermodynamic amorphous synthesizability limit and reaffirm the global stability of the rutile structure. We find 75 synthesizable IrO3 polymorphs and report a previously unknown FeF3-type structure as the most stable, termed α-IrO3. To test the algorithms performance, we compare to a random search of the candidate space and report at least a 2-fold increase in themore » rate of discovery. Additionally, the AL approach can acquire the most stable polymorphs of IrO2 and IrO3 with fewer than 30 density functional theory optimizations. Analysis of the structural properties of the discovered polymorphs reveals that octahedral local coordination environments are preferred for nearly all low-energy structures. Subsequent Pourbaix Ir–H2O analysis shows that α-IrO3 is the globally stable solid phase under acidic OER conditions and supersedes the stability of rutile IrO2. Calculation of theoretical OER surface activities reveal ideal weaker binding of the OER intermediates on α-IrO3 than on any other considered iridium oxide. We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [4];  [4];  [5]; ORCiD logo [1];  [6]
  1. Stanford Univ., CA (United States). SUNCAT Center for Interface Science and Catalysis
  2. Stanford Univ., CA (United States). SUNCAT Center for Interface Science and Catalysis; Univ. of Virginia, Charlottesville, VA (United States)
  3. Stanford Univ., CA (United States). SUNCAT Center for Interface Science and Catalysis; Indian Inst. of Technology Bombay, Powai (India)
  4. Toyota Research Institute, Los Altos, CA (United States)
  5. Technical Univ. of Denmark, Lyngby (Denmark)
  6. Technical Univ. of Denmark, Lyngby (Denmark); Stanford Univ., CA (United States). SUNCAT Center for Interface Science and Catalysis
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1656769
Grant/Contract Number:  
AC02-76SF00515; SC0008685
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 32; Journal Issue: 13; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Algorithms; Radiology; Crystal structure; Chemical structure; Stability

Citation Formats

Flores, Raul A., Paolucci, Christopher, Winther, Kirsten T., Jain, Ankit, Torres, Jose Garrido, Aykol, Muratahan, Montoya, Joseph, Nørskov, Jens K., Bajdich, Michal, and Bligaard, Thomas. Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction. United States: N. p., 2020. Web. doi:10.1021/acs.chemmater.0c01894.
Flores, Raul A., Paolucci, Christopher, Winther, Kirsten T., Jain, Ankit, Torres, Jose Garrido, Aykol, Muratahan, Montoya, Joseph, Nørskov, Jens K., Bajdich, Michal, & Bligaard, Thomas. Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction. United States. https://doi.org/10.1021/acs.chemmater.0c01894
Flores, Raul A., Paolucci, Christopher, Winther, Kirsten T., Jain, Ankit, Torres, Jose Garrido, Aykol, Muratahan, Montoya, Joseph, Nørskov, Jens K., Bajdich, Michal, and Bligaard, Thomas. Thu . "Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction". United States. https://doi.org/10.1021/acs.chemmater.0c01894. https://www.osti.gov/servlets/purl/1656769.
@article{osti_1656769,
title = {Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction},
author = {Flores, Raul A. and Paolucci, Christopher and Winther, Kirsten T. and Jain, Ankit and Torres, Jose Garrido and Aykol, Muratahan and Montoya, Joseph and Nørskov, Jens K. and Bajdich, Michal and Bligaard, Thomas},
abstractNote = {The discovery of high-performing and stable materials for sustainable energy applications is a pressing goal in catalysis and materials science. Understanding the relationship between a material’s structure and functionality is an important step in the process, such that viable polymorphs for a given chemical composition need to be identified. Machine-learning-based surrogate models have the potential to accelerate the search for polymorphs that target specific applications. Herein, we report a readily generalizable active-learning (AL) accelerated algorithm for identification of electrochemically stable iridium oxide polymorphs of IrO2 and IrO3. The search is coupled to a subsequent analysis of the electrochemical stability of the discovered structures for the acidic oxygen evolution reaction (OER). Structural candidates are generated by identifying all 956 structurally unique AB2 and AB3 prototypes in existing materials databases (more than 38000). Next, using an active learning approach, we find 196 IrO2 polymorphs within the thermodynamic amorphous synthesizability limit and reaffirm the global stability of the rutile structure. We find 75 synthesizable IrO3 polymorphs and report a previously unknown FeF3-type structure as the most stable, termed α-IrO3. To test the algorithms performance, we compare to a random search of the candidate space and report at least a 2-fold increase in the rate of discovery. Additionally, the AL approach can acquire the most stable polymorphs of IrO2 and IrO3 with fewer than 30 density functional theory optimizations. Analysis of the structural properties of the discovered polymorphs reveals that octahedral local coordination environments are preferred for nearly all low-energy structures. Subsequent Pourbaix Ir–H2O analysis shows that α-IrO3 is the globally stable solid phase under acidic OER conditions and supersedes the stability of rutile IrO2. Calculation of theoretical OER surface activities reveal ideal weaker binding of the OER intermediates on α-IrO3 than on any other considered iridium oxide. We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.},
doi = {10.1021/acs.chemmater.0c01894},
journal = {Chemistry of Materials},
number = 13,
volume = 32,
place = {United States},
year = {Thu Jun 18 00:00:00 EDT 2020},
month = {Thu Jun 18 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 52 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

CALYPSO: A method for crystal structure prediction
journal, October 2012


Crystal structure prediction from first principles
journal, December 2008

  • Woodley, Scott M.; Catlow, Richard
  • Nature Materials, Vol. 7, Issue 12
  • DOI: 10.1038/nmat2321

Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3
journal, February 2017

  • Pearce, Paul E.; Perez, Arnaud J.; Rousse, Gwenaelle
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4864

Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations
journal, July 2017


Probabilistic Principal Component Analysis
journal, August 1999

  • Tipping, Michael E.; Bishop, Christopher M.
  • Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 61, Issue 3, p. 611-622
  • DOI: 10.1111/1467-9868.00196

XV. The crystal structure of brookite
journal, January 1928

  • Pauling, Linus; Sturdivant, J. H.
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 68, Issue 1-6
  • DOI: 10.1524/zkri.1928.68.1.239

Ab initio random structure searching
journal, January 2011


Thermodynamic limit for synthesis of metastable inorganic materials
journal, April 2018

  • Aykol, Muratahan; Dwaraknath, Shyam S.; Sun, Wenhao
  • Science Advances, Vol. 4, Issue 4
  • DOI: 10.1126/sciadv.aaq0148

The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80°C in acid solutions
journal, June 1978


Synthesis, Crystal Structure, and Electronic Properties of High-Pressure PdF 2 -Type Oxides MO 2 (M = Ru, Rh, Os, Ir, Pt)
journal, October 2014

  • Shirako, Yuichi; Wang, Xia; Tsujimoto, Yoshihiro
  • Inorganic Chemistry, Vol. 53, Issue 21
  • DOI: 10.1021/ic501770g

A highly active and stable IrO x /SrIrO 3 catalyst for the oxygen evolution reaction
journal, September 2016


Thermochemical Data of Pure Substances
book, October 1995


Tight-Binding Approximation-Enhanced Global Optimization
journal, March 2018

  • Van den Bossche, Maxime; Grönbeck, Henrik; Hammer, Bjørk
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 5
  • DOI: 10.1021/acs.jctc.8b00039

Atomic-position independent descriptor for machine learning of material properties
journal, December 2018


Construction of crystal structure prototype database: methods and applications
journal, March 2017

  • Su, Chuanxun; Lv, Jian; Li, Quan
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 16
  • DOI: 10.1088/1361-648X/aa63cd

XtalOpt: An open-source evolutionary algorithm for crystal structure prediction
journal, February 2011


Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media
journal, August 2019

  • Strickler, Alaina L.; Flores, Raul A.; King, Laurie A.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 37
  • DOI: 10.1021/acsami.9b13697

Surface stability of perovskite oxides under OER operating conditions: A first principles approach
journal, January 2020

  • Raman, Abhinav S.; Patel, Roshan; Vojvodic, Aleksandra
  • Faraday Discussions
  • DOI: 10.1039/C9FD00146H

Revealing the Reactivity of the Iridium Trioxide Intermediate for the Oxygen Evolution Reaction in Acidic Media
journal, July 2019


Catalysis-Hub.org, an open electronic structure database for surface reactions
journal, May 2019


USPEX—Evolutionary crystal structure prediction
journal, December 2006

  • Glass, Colin W.; Oganov, Artem R.; Hansen, Nikolaus
  • Computer Physics Communications, Vol. 175, Issue 11-12
  • DOI: 10.1016/j.cpc.2006.07.020

Inverse Design of Solid-State Materials via a Continuous Representation
journal, November 2019


Active learning for accelerated design of layered materials
journal, December 2018

  • Bassman, Lindsay; Rajak, Pankaj; Kalia, Rajiv K.
  • npj Computational Materials, Vol. 4, Issue 1
  • DOI: 10.1038/s41524-018-0129-0

Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution
journal, October 2012

  • Trotochaud, Lena; Ranney, James K.; Williams, Kerisha N.
  • Journal of the American Chemical Society, Vol. 134, Issue 41
  • DOI: 10.1021/ja307507a

On the Constitution of Metallic Sodium
journal, May 1933


How to predict very large and complex crystal structures
journal, September 2010

  • Lyakhov, Andriy O.; Oganov, Artem R.; Valle, Mario
  • Computer Physics Communications, Vol. 181, Issue 9
  • DOI: 10.1016/j.cpc.2010.06.007

Electrocatalytic oxygen evolution on reactively sputtered electrochromic iridium oxide films
journal, November 1979

  • Beni, G.; Schiavone, L. M.; Shay, J. L.
  • Nature, Vol. 282, Issue 5736
  • DOI: 10.1038/282281a0

Genetic algorithms for computational materials discovery accelerated by machine learning
journal, April 2019

  • Jennings, Paul C.; Lysgaard, Steen; Hummelshøj, Jens Strabo
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0181-4

The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
journal, December 2015


Synthesis and Activities of Rutile IrO 2 and RuO 2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions
journal, January 2012

  • Lee, Youngmin; Suntivich, Jin; May, Kevin J.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1021/jz2016507

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Statistical Analysis of Coordination Environments in Oxides
journal, September 2017


Low-Scaling Algorithm for Nudged Elastic Band Calculations Using a Surrogate Machine Learning Model
journal, April 2019


Electrolysis of water on oxide surfaces
journal, September 2007


XtalOpt Version r12: An open-source evolutionary algorithm for crystal structure prediction
journal, April 2019


Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water
journal, August 2013

  • Bajdich, Michal; García-Mota, Mónica; Vojvodic, Aleksandra
  • Journal of the American Chemical Society, Vol. 135, Issue 36
  • DOI: 10.1021/ja405997s

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


Insights into the Electrochemical Oxygen Evolution Reaction with ab Initio Calculations and Microkinetic Modeling: Beyond the Limiting Potential Volcano
journal, July 2019

  • Dickens, Colin F.; Kirk, Charlotte; Nørskov, Jens K.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 31
  • DOI: 10.1021/acs.jpcc.9b03830

AFLOW: An automatic framework for high-throughput materials discovery
journal, June 2012


High-Pressure Phases of Silane
journal, July 2006


Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Machine Learning and Energy Minimization Approaches for Crystal Structure Predictions: A Review and New Horizons
journal, May 2018


High-throughput calculations of catalytic properties of bimetallic alloy surfaces
journal, May 2019


Structural Studies of Rutile-Type Metal Dioxides
journal, June 1997

  • Bolzan, A. A.; Fong, C.; Kennedy, B. J.
  • Acta Crystallographica Section B Structural Science, Vol. 53, Issue 3
  • DOI: 10.1107/S0108768197001468

Exponential multiplicity of inherent structures
journal, January 1999


Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
journal, June 2006

  • Oganov, Artem R.; Glass, Colin W.
  • The Journal of Chemical Physics, Vol. 124, Issue 24
  • DOI: 10.1063/1.2210932

Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
journal, July 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee-Chul
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz501061n

A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151

Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO 2 (110)
journal, February 2017

  • Kuo, Ding-Yuan; Kawasaki, Jason K.; Nelson, Jocienne N.
  • Journal of the American Chemical Society, Vol. 139, Issue 9
  • DOI: 10.1021/jacs.6b11932

Active learning of linearly parametrized interatomic potentials
journal, December 2017


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


I. Zur Kristallographie von Anatas und Rutil
journal, January 1923

  • Parker, Bobert L.
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 59, Issue 1-6
  • DOI: 10.1524/zkri.1923.59.1.1

The crystal structures of the trifluorides of iron, cobalt, ruthenium, rhodium, palladium and iridium
journal, January 1957


XtalOpt Version r12: An open-source evolutionary algorithm for crystal structure prediction
journal, April 2019


Revealing the Reactivity of the Iridium Trioxide Intermediate for the Oxygen Evolution Reaction in Acidic Media
journal, July 2019


Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Crystal structure prediction from first principles
journal, December 2008

  • Woodley, Scott M.; Catlow, Richard
  • Nature Materials, Vol. 7, Issue 12
  • DOI: 10.1038/nmat2321

Operando XANES from first-principles and its application to iridium oxide
journal, January 2020

  • Nattino, Francesco; Marzari, Nicola
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 19
  • DOI: 10.1039/c9cp06726d

Active learning of linearly parametrized interatomic potentials
text, January 2016