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A consistent challenge for both new and expert practitioners of small-angle
scattering (SAS) lies in determining how to analyze the data, given the limited
information content of said data and the large number of models that can be
employed. Machine learning (ML) methods are powerful tools for classifying
data that have found diverse applications in many fields of science. Here, ML
methods are applied to the problem of classifying SAS data for the most

supporting information at journals.iucr.org/j

appropriate model to use for data analysis. The approach employed is built
around the method of weighted k-nearest neighbors (WKNN), and utilizes a
subset of the models implemented in the SasView package (https://www.
sasview.org/) for generating a well defined set of training and testing data. The
prediction rate of the wKNN method implemented here using a subset of
SasView models is reasonably good for many of the models, but has difficulty
with others, notably those based on spherical structures. A novel expansion of
the wKNN method was also developed, which uses Gaussian processes to
produce local surrogate models for the classification, and this significantly
improves the classification accuracy. Further, by integrating a stochastic gradient
descent method during post-processing, it is possible to leverage the local
surrogate model both to classify the SAS data with high accuracy and to predict
the structural parameters that best describe the data. The linking of data
classification and model fitting has the potential to facilitate the translation of
measured data into results for both novice and expert practitioners of SAS.

1. Introduction

Small-angle scattering (SAS) using either X-rays or neutrons
(SAXS or SANS, respectively) is a powerful technique for
studying the structure of bulk disordered materials. Metals,
ceramics, polymers, nanocomposites, colloids, biomaterials
and cement are only a few examples of the possible materials
that can be examined with the technique. SAS data from such
samples generally lack strongly characteristic features that
help guide practitioners through the analysis of the data. Most
SAS data analysis relies on the wide variety of models that
have been implemented in various software packages (Kline,
2006; BreBler et al., 2015; Doucet et al., 2017). The diversity of
the available models, and the possibility that multiple models
having very different physical bases can fit the data equally
well, can make the process of data analysis challenging,
particularly for novice users of the technique. The problem is
compounded by the data rates of modern SAXS and SANS
instruments. A single experiment can produce a large number
of data sets that may require considerable user input to
analyze if it is not immediately evident which model should be
used for analyzing the data from the material being studied.
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Machine learning (ML) methods have proven useful for a
variety of classification and identification problems (Mueller et
al., 2016; Butler et al., 2018), and the identification of the most
appropriate model for fitting a SAS data set is a task well
suited to ML. The ability to use the various model functions to
calculate a diverse set of model intensity profiles as a training
set makes it possible to apply any number of forms of ML to
the problem. The most logical form of ML to use is one that
evaluates to the same criterion as is used during data analysis,
namely the distance between the measured and model SAS
intensity profiles, which is directly related to the parameter
employed during least-squares minimization. ML methods
that employ a distance as an objective function are known as
k-nearest neighbors (KNN) methods (Cunningham & Delany,
2007). Once the appropriate model for fitting the SAS data has
been identified, the next logical step is to determine the
parameters that give a model profile that best fits the data. The
available SAS data-fitting software packages use nonlinear
minimization methods, potentially with user-supplied physi-
cally realistic ranges for the starting parameters. With a library
of model profiles in hand, such as might be calculated from the
extensive body of analytical form and structure factors that
are available, other options exist.

The statistics community has spent considerable effort in
developing emulators that can approximate stochastic solu-
tions in a functional form, based on either randomly sampled
points (Higdon er al, 2004; Kennedy & O’Hagan, 2001;
Santner ef al., 2003) or advanced sampling methods (Dette &
Pepelyshev, 2010; Haaland & Qian, 2011; Johnson et al., 1990;
Joseph et al., 2014; Montgomery, 2006). Gaussian processes
(GPs) are the preferred methods for approximating both the
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Figure 1

mean-field and covariance processes from arbitrary pointwise
values under the assumption that the values are independently
identically distributed N(0, o) random variables. For the case
where arbitrary pointwise values are exact, without any error,
the mean field is equivalent to reproducing kernel Hilbert
spaces (Aronszajn, 1950; Scholkopf & Smola, 2001) with the
appropriate matching covariance kernel (Rasmussen &
Williams, 2005). Kernel-based approximation methods are at
the core of the majority of research being done within the
greater high-dimensional function approximation community
(Fasshauer, 2007). Similarly to most approximation methods,
the bulk of the work assumes continuity of the mean field, with
only relatively recent work done for discontinuous mean-field
approximation through treed GP methods (Gramacy & Lee,
2008) or partitioning of mean fields into continuous regions
(Gorodetsky, 2012). These GP approximation methods can be
used with the KNN training data to determine the values of
the parameters used to calculate a model SAS intensity profile
that are closer to the input SAS data than any of the existing
members of the training library.

Here, we present a study of the utility of weighted k-nearest
neighbors (WKNN) and wKNN with GP for classifying SAS
data sets for the most appropriate model for fitting the data.
The study utilized training and test model intensity profiles
generated using the models implemented in SasView’s
sasmodels package (Doucet et al., 2017). The results demon-
strate that the application of GP methods to wKNN makes it
possible to identify the most appropriate model for fitting SAS
data with good accuracy. Further, by applying stochastic
gradient descent (SGD) minimization methods to the results
of wKNN with GP using the library of parameters that
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(a) Example model profiles used for training the system, shown with schematics of the structures. The schematics are not shown on the correct relative
scale. The black curve was calculated from a core—shell-sphere with a polydisperse core, the red curve was calculated from a flexible cylinder having a
polydisperse length and the blue curve was calculated from the linear pearls model having nine pearls. (b) An example core—shell-sphere intensity

profile generated with noise for testing the ML methods.
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Table 1

Brief descriptions of all the models used in this study, with online links.

All links should be prefixed with https://www.sasview.org/docs/user/models/ to give their full address.

Model

Brief description

Online documentation link

Adsorbed layer
Broad peak
Core multi-shell

Core-shell-sphere
Correlation length

DAB

Flexible cylinder
Fractal

Fractal core—shell
Fuzzy sphere
Gauss Lorentz gel
Guinier

Scattering from an adsorbed layer on particles

Broad Lorentzian-type peak on top of a power-law decay

This model provides the scattering from a spherical core with one to four concentric shell
structures; the SLDs of the core and each shell are specified individually

Form factor for a monodisperse spherical particle with a core-shell structure

Calculates an empirical functional form for SAS data characterized by a low-Q signal and a high-
Q signal

DAB (Debye—Anderson—Brumberger) model

Flexible cylinder where the form factor is normalized by the volume of the cylinder

Calculates the scattering from fractal-like aggregates of spheres following the Texiera reference

Scattering from a fractal structure formed from core-shell-spheres

Scattering from spherical particles with a fuzzy surface

Gauss Lorentz gel model of scattering from a gel structure

This model fits the Guinier function

adsorbed_layer.html
broad_peak.html
core_multi_shell.html

core_shell_sphere.html
correlation_length.html

dab.html
flexible_cylinder.html
fractal.html
fractal_core_shell.html
fuzzy_sphere.html
gauss_lorentz_gel.html
guinier.html

Lamellar

Lamellar hg
Lamellar stack paracrystal
Linear pearls
Lorentz

Mass fractal

Mass surface fractal
Mono Gauss coil
Multilayer vesicle
Onion

Peak Lorentz

Pearl necklace

Poly Gauss coil
Polymer excl. volume

Ornstein-Zernicke correlation length model
Mass fractal model

Mass surface fractal model

Scattering from monodisperse polymer coils
P(q) for a multi-lamellar vesicle

A Lorentzian peak on a flat background

Scattering from polydisperse polymer coils
Polymer excluded volume model

Lyotropic lamellar phase with uniform SLD and random distribution
Random lamellar phase with head and tail groups

Random lamellar sheet with paracrystal structure factor

Linear pearls model of scattering from spherical pearls

Onion-shell model with constant, linear or exponential density

Colloidal spheres chained together with no preferential orientation

lamellar.html
lamellar_hg.html
lamellar_stack_paracrystal.html
linear_pearls.html
lorentz.html
mass_fractal.html
mass_surface_fractal.html
mono_gauss_coil.html
multilayer_vesicle.html
onion.html
peak_lorentz.html
pearl_necklace.html
poly_gauss_coil.html
polymer_excl_volume.html

Power law Simple power law with a flat background power_law.html
Raspberry Calculates the form factor, P(q), for a ‘raspberry-like’ structure raspberry.html
Sphere Spheres with uniform scattering length density sphere.html

Spherical sld
Star polymer
Surface fractal
Teubner Strey
Two Lorentzian

Spherical SLD intensity calculation
Star polymer model with Gaussian statistics

Teubner-Strey model of microemulsions

Lorentzian-type functions
Two-power law
Unified power R,

developed by Beaucage

Vesicle Vesicle model representing a hollow sphere

Fractal-like aggregates based on the Mildner reference
This model calculates an empirical functional form for SAS data characterized by two

This model calculates an empirical functional form for SAS data characterized by two power laws
This model employs the empirical multiple level unified exponential/power-law fitting method

spherical_sld.html
star_polymer.html
surface_fractal.html
teubner_strey.html
two_lorentzian.html

two_power_law.html
unified_power_Rg.html

vesicle.html

produced the training set, it is actually possible to determine
the structural parameters required for a given model that best
fit the data, thereby providing users of SAS with a new method
for data analysis that has considerable potential for automa-
tion.

2. Methods
2.1. Training and test data

The SAS data used for training and testing were simulated
using the sasmodels package that is incorporated in SasView.
Thirty-nine of the seventy-five model functions implemented
in Version 4.1.2 were used for the training and test data. The
models that are not included in this study were dropped for
being computationally expensive and therefore prohibitive for
the demonstration. Herein, the names of the models are used
as the class labels, thereby creating a direct relationship with
the simulated SAS intensity profile for the ML classifier. The
list of the model functions employed is shown in Table 1,

which gives more detail about each model function used and a
link to the full description from the online SasView docu-
mentation. These models correspond to shapes (e.g. star
polymer, onion, raspberry) and shape-independent models
(e.g. a Gaussian or Lorentzian function).

To train the ML methods, 10 000 samples were generated
for each model using physically realistic ranges of parameters
supplied to the program using configuration files (see the
supporting information, which provides the parameters for the
sasmodels models employed in the training and testing, along
with Python code that validates all ML methods in this paper).
In cases where parameters can be polydisperse, such as the
radius of a sphere, one of the parameters defining a model was
made polydisperse using the methods implemented in
sasmodels. The model parameters were generated within the
specified ranges using Latin hypercube sampling (LHS), which
is a standard sampling technique in statistics. LHS uses a
stratified sampling technique to create a proper probability
distribution of model parameters (McKay et al., 1979).
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The set of model profiles, examples of which are shown in
Fig. 1(a), and the parameters that produced them were stored
for use in the ML methods implemented and in the stochastic
gradient descent fitting of the input data, which are described
below. The simulated data used to test the ML methods were
generated using the same approach as the training data sets,
but Gaussian noise was added to the profiles to make them
more realistic. An example of a simulated data set for testing
the ML methods generated from the ‘core-shell-sphere’
model is shown in Fig. 1(b).

2.2. Weighted k-nearest neighbors

The classic KNN algorithm is a simple ML algorithm used
to classify data points into categories, where labeled data are
used and classification is defined by the nearest neighbors
(Altman, 1992; Cunningham & Delany, 2007). The number of
clusters is always defined by the number of different classes in
the training data, and for this study k = 39. One of the major
drawbacks of using regular KNN lies in its majority-rule
voting system that makes it vulnerable to skewed distributions
of classes, which can result in a higher likelihood of predicting
the more common classes. The classic KNN is an unweighted
KNN that is based on the Euclidean distance (Altman, 1992).
It employs a voting system where, if the top k nearest neigh-
bors are selected, then the class that holds the majority of the
k nearest neighbors is selected as the unknown data point’s
class.

In the wKNN algorithm (Wettschereck et al, 1997), the
weights are assigned on the basis of the distances between
points such that the classes with points with shorter distances
are given a greater weight than the classes having points with
larger distances. Unlike the classical formulation of KNN
which calculates the likelihood of predicting the right class on
the first try, wKNN uses a local neighborhood to determine
classification. By widening the scope of possible classes, the
likelihood of finding the correct class is increased. With a
larger set of data available, the probability of being able to
identify the correct class to which a data set belongs increases,
which is broadly true for all ML methods.

Let the unknown SAS data set I(g) be described as a vector
S = (S, ..., S, that is sampled at n arbitrary points in g,
which is the momentum transfer of the scattered X-ray or
neutron [g = (47/1)sin6, where 6 is half the scattering angle
and A is the wavelength of the incident radiation]. The
intensity values at each g are the ‘features’ of the profile. We
note that the accuracy of this or any other ML method is
dependent upon the quality of the training data and the
information contained therein. Increasing the g range directly
increases the information content of the data. In this study we
used the range [10~° A1 A_l], which roughly corresponds
to the full dynamic range of the SANS instruments at Oak
Ridge National Laboratory (Heller et al., 2018).

Let the set of classes of models that are in the training set
be denoted C and let a member w of this set of classes be c,,.
Each ¢, consists of i member SAS data sets T, ;=
(T, T, ;,) against which an unknown S is to be clas-

pido oo Lo in

sified. Here, T, ; are sampled at the same # points in g as the
unknown S. We note that, if the unknown data are not sampled
at the same points as the training data, this problem can be
overcome with simple interpolation of the unknown data. The
weighting employed here is the distance d between S and one
member of the class T, ;, shown in equation (1):

i

n

1/2
d(s. T, ) = [Z(log S, — log Tcwl.,,.)z} : (1)

j=1

The large range of intensities in a single profile, as can be seen
in Fig. 1, is addressed by working with the logarithm of the
intensity. It is important to note that both training and testing
data are assumed to be calibrated. It must also be noted that, if
calibration of data is not done as a pre-processing step before
classification, then the distance function of the classifier, given
in equation (1), can be substituted with a similarity measure
that is not sensitive to calibration. Alternatively, the unknown
data could be preprocessed by applying a scale factor, such as
the ratio of the integrated intensities of the model and
unknown profiles, to the unknown data. Doing so would
increase the computational cost of the method and decrease
the accuracy of the prediction.

The kernel function for the wKNN classifier, K(d(S, T, ,)),
is defined according to equation (2):

1

aST) @

K(d(S, T, ) =

Then, the probability that S is a member of the class c,, is given
by equation (3):

Zieew K(d(s’ Tcw’i))
chec Zieew K(d(s’ Tcw,i)) '

The class c,, to which S is estimated to belong (i.e. what S is
classified to be) is denoted M(S) and is given by equation (4):

M(S) = max p(c,|S)- “4)

p(c,|S) =

G)

2.3. Gaussian process kernel formulation

We briefly introduce the noise-free Gaussian process using
the kernel formulation given by Rasmussen & Williams (2005)
and adapt it to our notation. A GP is defined as a collection of
random variables such that any finite subset of the collection
follows a Gaussian distribution. Suppose we are given a set Sy
of unique data points, Sy = {Xi, ..., Xy}, in a bounded domain
Sy C RY. For a smooth function f, we define the vector

f(x))
fsy = : : &)
f ("N)

The covariance matrix for the set of points Sy and S’N is
defined as
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k(xy, X;) k(xl’ iﬁ/)

Ksvd)=| | o
k(xN, il) k(xN, iﬁ)

where k(x;, X;) is the covariance function or kernel for f5 . In

this study we use the commonly used stationary non-
degenerate squared exponential kernel,

g lIx; — %I
k(x,—, X;) = exp (— —212] , 7

where [ is a length parameter for weighting the distance
between points. Details about other valid kernels are given by
Rasmussen & Williams (2005), along with a more detailed
explanation of the GP method.

Then, we use the standard random variable notation, F(x;)
to denote the GP at the point x;. The f(x;) are the realization of
the GP at the point x,. Here, we assume that there exists
additive, independent and identically distributed Gaussian
noise with variance o. Then, the posterior distribution of F(x)
for an arbitrary point x € R, given the data S v and fg . is

F(x)|Sy, fs, 2/\/<K(x, Sy) [K(Sx:Sy) + 1] s, , K(x, x)

LK (0S)[K(Sy.Sx) + o] .. K(SN,X)>.
®)

Here, Lis the identity matrix. In functional form, the mean GP
function is given by

T = K(x, S,)[K(Sy, Sy) + 1] 'fs, ©)

0.8
0.6
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02 &

GP Surrogate Model Prediction
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Figure 2
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with variance

V(]
= K(x. x) — K(x, Sy)[K(Sy. Sy) + 0?1] fs, . K(Sy. %)
(10)

An implementation of GP for wKNN, referred to as gpKNN,
was developed. The way that the GP improves wKNN is
shown schematically in Fig. 2. Surrogate models are produced
for each class using the GP and the training data available for
each class. These GP surrogates produce a global approx-
imation for each class, which often leads to finding fits to the
classification data that are better than existing members of the
set of training data sets. By leveraging the continuity of the
space of the curves that result from the ranges of model
parameters sampled, the accuracies of the predictions
produced by gpKNN are generally better than those produced
by wKNN.

2.4. Evaluating wKNN and gpKNN performance

In order to gauge how accurate the wKNN and gpKNN
classifications are at identifying the correct model to use for
data analysis, a set of unknowns encompassing all imple-
mented classes was generated and all p(c,|S) were calculated
[equation (3)]. The percentage of tests where p(c,,|S) correctly
identifies the class was determined, as were the percentages of
tests where the correct class was one of the top two or top
three p(c,|S) values. When used with the stochastic gradient
descent fitting, described below, the parameters associated
with the best models in the various identified sets of training

—— Random core shell sphere
gpKNN prediction onion
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The neighborhood of the closest model found in a class is used to generate interpolations of class members to determine whether a better fit to the data
can be found from within that class. We have reduced the parameter space for visualization purposes.
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Table 2

Performance of the wKNN method for identifying the correct model that should be used for fitting a SANS data set.

The ordering of the models in the table is based on the “Top 3’ column. Subsequent orderings are based on the “Top 2’ and “Top’ columns.

Model Top Top 2 Top 3 Model Top Top 2 Top 3 Model Top Top 2 Top 3
Lorentz 100 100 100 Mass fractal 94 97 99 Raspberry 79 92 95
Star polymer 100 100 100 Multilayer vesicle 88 97 99 Fractal core—shell 61 88 94
Guinier 100 100 100 Mono Gauss coil 61 97 99 Gauss Lorentz gel 56 76 94
DAB 100 100 100 Broad peak 90 96 99 Teubner Strey 85 90 92
Mass surface fractal 98 100 100 Pearl necklace 83 95 99 Spherical sld 70 82 92
Two-power law 98 100 100 Unified power R, 86 94 99 Lamellar 56 79 90
Linear pearls 90 100 100 Adsorbed layer 87 92 99 Flexible cylinder 71 78 88
Peak Lorentz 99 99 100 Power law 97 97 98 Fractal 52 68 82
Correlation length 98 99 100 Lamellar stack paracrystal 92 97 98 Core multi-shell 53 68 76
Polymer excl. volume 93 99 100 Two Lorentzian 92 96 98 Sphere 9 26 70
Surface fractal 97 98 100 Lamellar hg 72 88 97 Onion 22 38 52
Poly Gauss coil 77 98 100 Vesicle 73 84 97 Fuzzy sphere 7 14 33
Gaussian peak 97 98 99 Gel fit 72 90 96 Core-shell-sphere 0 0 1

model profiles were employed as the starting conditions for
the fitting.

2.5. Stochastic gradient descent data fitting

Stochastic gradient descent (SGD) is a popular method for
function optimization in ML because it is very effective for
large-scale optimization problems (Bottou & Bousquet, 2008).
When the dimension of the optimization parameter is high, as
is the case in large-scale ML problems, a traditional gradient
descent optimization becomes computationally prohibitive, or
even intractable, due to memory and processing limitations. In
contrast, SGD accelerates the iterative optimization step by
reducing the number of data points used to calculate the
gradient, potentially down to a single data point. The SGD for
parameters 0 and an objective function J(0) at a given data
point pair (x;, y;) considered at that step of the SGD is

0=0—aV, JO, (x,y)). (11)

Here, « is the step size of the iterative optimization process. In
the present work, SGD is used to optimize the fit of a model
profile to the input data set. The parameters 6 are the various
fitting parameters in the models implemented in SasView. The
parameters for the top model identified by gpKNN served as
the starting point for the optimization. The quality of the fit to
the data is evaluated using the distance between the model
intensity profile and the input data shown in equation (1). The
coupling of gpKNN to SGD is referred to as sgdKNN and its
performance in identifying the correct model class was eval-
uated using the same approach as for wKNN and gpKNN.

3. Results

An example prediction by wKNN for the ‘core-shell-sphere’
data set shown in Fig. 1(b) is presented in Fig. 3. The best
model class for the input data was identified as the ‘onion’
model, which is a multi-shell spherical model that is closely
related to the true class, and the profile from the onion
training set is presented with the data in Fig. 3. The closest
core-shell training data set is also presented with the data in
Fig. 3, and is only the fourth most appropriate model

according to the wKNN classifier. This particular training set is
clearly less similar to the model than the curve taken from the
set of onion profiles and demonstrates that the accuracy of
wKNN is bound by the breadth of the training set.

The overall performance of wKNN was determined for 100
randomly chosen test models from each of the various models
in the training set against the training set calculated using
SasView. The results of the test for the top three predictions
are presented in Table 2 as the percentage of time that the
right model was found to be in one of the top three selections.
In many cases, WKNN correctly identified the most appro-
priate model as being within the three most appropriate model
types. As a summary of the information in the table, the
average percentage of time that the correct model was the top
choice was 75.8%. Further, 84.9% of the time it was in the top
two choices, and the correct model was in the top three choices
90.6% of the time. In light of the fact that the training set
consisted of 39 models, the results demonstrate that using ML
methods to assist users in identifying how to analyze their data

10° 5
1044
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2 2 3 3 2 o
N - o - N w
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Figure 3

The class identified by wKNN to be nearest to the core—shell-sphere
input data shown (circles) in Fig. 1 is the onion class. The onion class
training data set (red) is the nearest member of any class to the data. The
core-shell-sphere class curve (blue) was the best member of that
particular class, but the core-shell-sphere class of models was only the
fourth-nearest class of models to the simulated data.

6 of 9 Richard K. Archibald et al.

+ Weighted KNN machine learning techniques

J. Appl. Cryst. (2020). 53



research papers

Table 3

Performance of the gpKNN method for identifying the correct model that should be used for fitting a SANS data set.

The ordering of the models in the table is based on the “Top 3’ column. Subsequent orderings are based on the “Top 2’ and “Top’ columns.

Model Top Top 2 Top 3 Model Top Top 2 Top 3 Model Top Top 2 Top 3
Star polymer 100 100 100 Linear pearls 88 96 100 Multilayer vesicle 74 86 98
DAB 100 100 100 Lamellar stack paracrystal 82 95 100 Surface fractal 96 96 97
Two Lorentzian 99 100 100 Gel fit 87 99 99 Mono Gauss coil 87 95 97
Unified power R, 99 100 100 Flexible cylinder 94 98 99 Spherical sld 64 89 95
Polymer excl. volume 98 100 100 Two-power law 92 98 99 Core multi-shell 76 86 94
Mass surface fractal 98 100 100 Gauss Lorentz gel 77 96 99 Core-shell-sphere 67 86 91
Teubner Strey 97 100 100 Broad peak 72 93 99 Fractal 55 70 84
Guinier 93 100 100 Adsorbed layer 88 93 99 Fuzzy sphere 9 48 83
Lorentz 90 100 100 Pearl necklace 97 98 98 Lamellar hg 45 66 82
Gaussian peak 98 99 100 Mass fractal 86 97 98 Sphere 50 67 71
Correlation length 93 99 100 Raspberry 72 97 98 Vesicle 45 59 76
Peak Lorentz 89 99 100 Power law 91 96 98 Fractal core—shell 44 55 75
Poly Gauss coil 85 97 100 Onion 71 93 98 Lamellar 24 41 69
Table 4

Performance of the sgdKNN method for identifying the correct model that should be used for fitting a SANS data set.

The ordering of models in the table is based on the “Top 3’ column. Subsequent orderings are based on the ‘Top 2’ and “Top’ columns.

Model Top Top 2 Top 3 Model Top Top 2 Top 3 Model Top Top 2 Top 3
Star polymer 100 100 100 Linear pearls 91 97 100 Multilayer vesicle 76 87 98
DAB 100 100 100 Lamellar stack paracrystal 85 97 100 Surface fractal 97 97 98
Two Lorentzian 99 100 100 Gel fit 87 99 99 Mono Gauss coil 92 97 98
Unified power R, 100 100 100 Flexible cylinder 95 98 99 Spherical sld 78 91 96
Polymer excl. volume 100 100 100 Two-power law 94 99 99 Core multi-shell 79 91 95
Mass surface fractal 100 100 100 Gauss Lorentz gel 79 97 99 Core-shell-sphere 80 90 94
Teubner Strey 98 100 100 Broad peak 82 94 99 Fuzzy sphere 33 63 86
Guinier 99 100 100 Adsorbed layer 92 94 99 Lamellar hg 50 75 85
Lorentz 98 100 100 Mass fractal 91 98 99 Fractal 67 78 84
Gaussian peak 99 100 100 Onion 84 93 99 Vesicle 64 63 80
Correlation length 96 99 100 Pearl necklace 98 98 98 Sphere 51 76 78
Peak Lorentz 97 99 100 Raspberry 74 97 98 Fractal core-shell 58 59 76
Poly Gauss coil 88 98 100 Power law 93 97 98 Lamellar 42 60 72

has considerable potential. However, there are clear cases
where the limitations of wKNN become evident. The core—
shell-sphere model is the most extreme example of where the
correct model was not within the three highest p(c,|S), even
though it had the fourth highest p(c,|S). In fact, the five worst
performing models in the set share a common feature: they are
sphere-based shapes. The curves in these training sets
presumably have a basic level of commonality that creates a
large number of possibilities for being near to the input data
set, such as can be seen in Fig. 3, leading to misidentification of
the correct model for the input data. In the example presented
in Fig. 3, there was simply a curve in the onion training set that
was closer to the test data than any of the curves in the core—
shell-sphere training set. If more of the cylinder-based models,
of which there are more than ten, had been included in the set
of models used to construct training sets, similar results may
have been observed in that set of models. Instead, the inclu-
sion of a single cylinder-based model in the set appears to have
reduced classification ambiguity arising from a larger popu-
lation of closely related models.

Table 3 displays the results of testing gpKNN with the same
100 randomly selected test data sets from each class that were
used in the evaluation of wKNN. Again, the top three
predictions were determined and the percentage of time that

the correct model was predicted to be in one of the top three
models was determined. As was true in the wKNN testing, the
correct model was predicted to be within the top three
predictions over 99% of the time for over half of the classes of
test data. However, the use of surrogate models in gpKNN
improved the performance of the prediction for all models.
Specifically, gpKNN considerably increased the number of
times the correct model was in the top three predicted classes.
To provide a broad comparison against the wKNN testing, the
average percentage of time that the correct model was the top
choice of gpKNN was 78.9%. It was among the top two
choices 89.4% of the time, and 94.9% of the time it was among
the top three choices. The results demonstrate a clear
improvement in the overall classification performance by
gpKNN. It is important to note that the number of models for
which the correct model was the top choice did not improve
significantly for the models that were very accurately classified
by wKNN, and arguably decreased for many classes, on the
basis of the numbers in the table. Only one model was
correctly identified as the top choice less than 10% of the time
(the ‘fuzzy sphere’ model). The results indicate that the
application of the GP introduced a degree of uncertainty in
the direct classification, even though the general character of
the various classes of models made it possible to place the
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correct class within the top three closest classes of models. The
improvement in the ability to narrow down the right class of
model to use during data analysis to three possibilities when
analyzing data from an experiment is of real value when
analyzing a large number of data sets where the fit to the data
is not known a priori.

The results of the quality of predictions that are obtained by
coupling SGD with gpKNN (sgdKNN) are presented in
Table 4. The same 100 randomly selected test data sets from
the various models used to generate the training sets were
employed for the performance characterization. Overall, the
integration of SGD minimization from the parameter set that
created the nearest model in the various models to the input
data improved the ability of the classifier to identify the
correct model from which the input data were generated. The
correct model was identified 84.3% of the time, and the top
two and three choices contained the correct model 91.8 and
95.5% of the time, respectively. The source of the improve-
ment can be understood through Fig. 4, which returns to the
core—shell-sphere model and the three closer classes originally
identified by gpKNN for the test input data presented in Fig. 1.
Starting from the sets of parameters for each training set
profile, the SGD minimization searches the parameter space
for new parameters that reduce the distance between the
model profile from the class and the input data. In some cases,
such as for the correct class of model, considerable improve-
ment can be obtained. Inappropriate model classes that simply
had a training set member near to the input data were only
marginally improved. The onion class model was closest to the
core-shell-sphere to begin with, but parameters could not be
found that fitted the data as well as the simple core—shell-
sphere model did. The quality of the fit that the sgdKNN core—
shell-sphere model found to the input data can be seen in
Fig. 4. In principle, the onion model should be able to fit data
that arise from a core-shell-sphere structure, but the addi-
tional parameters required to define the structure presumably
complicate the minimization search in such a way that the
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search becomes trapped in a local minimum. The main
downside to sgdKNN is in the greatly increased computational
cost of performing the SGD minimization because thousands
of profiles are calculated during the minimization. However,
the benefits of immediately having the data analysis result
provided with the most appropriate class for fitting the input
data are considerable and this is the main benefit of using an
ML method, such as KNN, to identify a range of likely model
choices.

4. Discussion and conclusion

The challenges in determining the most appropriate way to
analyze SAS data are often a source of frustration for users of
the techniques because of the nature of the data and the many
different ways of analyzing them. The present work demon-
strates that is it possible to use ML methods to narrow down
the choices for fitting SAS data from the diverse set that are
available, such as those that are implemented in the SasView
software package, to a few that could be manually fitted with
much less user effort. The ML method that serves as the
foundation for the present work, wKNN, employs a distance
function directly related to the target functions used in least-
squares minimization for SAS data analysis. As a result, the
comparison of the various models in the training sets against
the input data arguably uses the most direct measurement
available among ML methods.

The use of wKNN has other advantages, as well as draw-
backs. A key advantage is that by using training sets of data
directly, rather than abstractions of feature sets, such as are
used in neural networks, it becomes possible to preprocess the
unknown data or the training data prior to comparison with
equation (1). For example, as was noted in the Methods
section, it may be necessary to apply a scale factor in cases
where the unknown data were not properly calibrated. Simi-
larly, it may be necessary to apply a baseline to the training
data to be consistent with the input data. Such operations can
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(a) An illustration of the convergence of the SGD minimization for the test core—shell-sphere data shown in Fig. 1. The starting models were the best
found by gpKNN for the top three identified classes, namely onion (black), spherical SLD (red), flexible cylinder (blue) and core—shell-sphere (green).
(b) The best fitting core-shell-sphere model curve found using sgdKNN (red) for the input core-shell-sphere data set (open circles).
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be readily performed when using wKNN but may not be
possible when working with neural networks. Importantly, the
training data can easily be convoluted with the instrument
resolution function (i.e. smearing parameters) when
performing the classification using any of the wKNN-based
approaches presented herein. While doing so is of limited
importance when working with SAXS data, particularly from
synchrotrons, it is absolutely critical when working with SANS
data. The configurability of most SANS instruments makes
accounting for the instrument resolution function when
working with abstractions of feature sets not only difficult but
computationally expensive, because feature set abstractions
need to be produced for all reasonable instrument config-
urations that may be employed. Note that the smearing of
features in the data caused by the instrument resolution
function of a SANS instrument is not negligible and will affect
the prediction of any classification method, including those
based on wKNN that are presented here.

Computational expense is arguably one of the greatest
drawbacks of wKNN and related methods. All profiles in the
training data sets must be compared against each test data set
input for classification. As the wKNN database grows, the
computational expense of analyzing the data dominates the
cost of performing a prediction. Currently, there exist many
hardware and software solutions for dealing with massive
quantities of data, but addressing the matter is beyond the
scope of this project. Regardless, for extremely large and
complex classification problems, the desire to minimize the
size of the training set would be strong and might have an
impact on the power of the classifier. When coupled with SGD,
as was done here, the computational cost of performing a
single classification increases considerably. However, such
methods may make it possible to use a smaller training set
than when they are not used. Fortunately, many of the
calculations that must be performed are highly amenable to
parallelization, such that a moderate-sized computer cluster
could improve performance considerably, even when incor-
porating the instrument resolution function of a SANS
instrument.

The method described herein has the greatest potential to
benefit the operation of beamlines at user facilities where the
breadth of scientific topics studied is the greatest. One could
envision having the sgdKNN method coupled to the output of
the data-reduction process in a streamlined workflow. Shortly
after the experiment ends, a clearer path forward towards data
analysis and a scientific result would be presented to the user
than is often available at present. Mail-in programs at user
facilities would also benefit greatly because the methods
presented herein could help the staff efficiently collect and
analyze data for the mail-in program users of the facility.
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