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Abstract

Previous works in topology optimization of structures with contact boundary conditions have concentrated
on the two-dimensional rigid obstacle problem. This is because the contact analysis of multiple three-
dimensional deformable bodies with meshes that are non-matching across the contact interface requires
computationally complex contact algorithms beyond the scope of previous optimization investigations. Our
research is devoted to addressing topology design problems with multiple deformable three-dimensional
components in contact using state-of-the-art contact algorithms.

We formulate and resolve the design simulation problem using large deformation continuum mechanics
and the finite element method. To account for large sliding that can occur during the design optimization
process here, the mortar segment-to-segment approach was used to discretize the contact surface due to its
numerical robustness in this regime. Since, mortar integrals provide smooth contact forces as nodes slide
on/off the surface, solution convergence is well behaved. Considering the contact problem is computation-
ally expensive to solve, we solve the optimization problem using efficient nonlinear programming algorithms
which require the sensitivities of the cost and constraint functions. To this end, we formulate analytical ad-
joint sensitivity expressions to compute the gradients of general functionals. As expected and corroborated
in this work, the adjoint method is computationally efficient. Additionally, we use a B-spline design parame-
terization to regularize the topology optimization problem. We show that this parameterization reduces the
number of design variables compared to usual element-wise parameterizations and provides a precise and
smooth description of the design boundary. We present numerical example problems of multiple deformable
three-dimensional bodies in contact with large deformations and find optimal topologies that maximize the
total contact force, maximize the strain energy, and minimize the compliance.

Keywords: Finite elements, Large deformation, Mortar segment-to-segment, Sensitivity analysis, B-spline

1. Introduction

Appropriate modeling of the boundary conditions is crucial to the design of structural components.
Indeed, poor modeling results in poor designs with potentially catastrophic consequences. Of these boundary
conditions, contact is the one that dominates countless physical situations, e.g., crashworthiness, wear
and lubrication, metal forming, braking systems, tires, coupling devices, geomechanics, hardening testing,
ballistics, etc. [1]. It is present in all structural simulations. However, contact modeling is challenging so
these boundary conditions are often replaced by simple traction and/or displacement boundary conditions
which compromise the accuracy of the simulation and hence the validity of the design. We propose to
optimize structural components in contact by combining accurate contact modeling techniques with efficient
optimization algorithms.
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Despite the dominant role of contact in structural analysis, it is rarely modeled because it poses serious
conceptual, mathematic, and computational difficulties [2]. Indeed, the contact surfaces are unknown as
are the resulting contact pressures and displacements over these surfaces. Moreover, the contact pressure
must be compressive and the displacement must satisfy impenetrability constraints. These pressure and
impenetrability conditions make the contact problem particularly difficult to solve as the computational
analysis must resolve inequality constraints as well as the usual elasticity equations [2]. The presence
of friction makes the problem even more complex. Fortunately, several numerical techniques have been
developed to model contact efficiently and accurately, cf. [2–6].

The Signorini problem, i.e., a linear elastic body in contact with a rigid obstacle, has been extensively
studied [2]. Other early contact modeling works focused on the frictionless contact between linear elastic
bodies. Researchers eventually studied the large deformations of inelastic contacting bodies with friction.
To solve the contact problem numerically, the strong form of the equilibrium equation with the added con-
tact conditions are converted to an equivalent weak form which takes the form of a variational inequality.
The penalty method (PM) is often used to convert the variational inequality to an equality which is more
amenable to solution [2]. Unfortunately, the PM allows for small violations of the interpenetration constraint.
A large penalty parameter reduces the amount of this constraint violation, however, over-penalization leads
to numerical ill-conditioning. Alternatively, in the classical Lagrange multiplier method (LMM), the contact
conditions are satisfied exactly by introducing extra degrees of freedom, i.e., Lagrange multipliers. Intro-
ducing these unknowns makes the problem more expensive to solve in comparison with the PM. Moreover,
the LMM method requires an active set strategy to update active inequality constraints. The augmented
Lagrangian method (ALM) resolves these shortcomings by combining the PM and the LMM. It satisfies the
contact conditions exactly and uses a reasonable value for the penalty parameter. Both the PM and ALM
are available in commercial finite element software [6]. In our work, we apply the ALM since it avoids
indefinite systems of equations which can be a problem for many linear solvers. It also works expeditiously
within a Quasi-Newton solution scheme using direct solvers. Additionally, as presented in Section 4 and
demonstrated in Section 7, we can nonetheless formulate efficient sensitivity analysis.

When modeling multiple deformable bodies in contact with the finite element method, meshes of each
body generally do not align over the contact surface. Several approaches are adopted to integrate the
contact conditions over such nonconforming interfaces. The node-on-segment approach enforces the contact
constraint using collocation such that nodes on the “slave” surface must not penetrate the element faces of
the opposing “master” surface [7]. This approach is plagued by variational inconsistency (failure to pass
the patch test), locking in the two-pass variant and abrupt jumps in the contact pressure. These issues are
resolved by the mortar segment-to-segment method, where the contact constraint is enforced in an integral
sense, via projection of the slave onto the mating element faces on the master surface [8, 9]. The mortar
segment-to-segment method is less dependent to the master and slave surface designations and does not
exhibit large contact pressure fluctuations.

The eXtended Finite Element Method (XFEM) has shown great promise to model friction and sliding
contact [10]. In this approach, the displacement field is augmented by enrichment functions to capture
discontinuities. The primary advantage of the XFEM method is that it does not require a conforming mesh
over the body, and in particular the contact surface. But like all methods, it has disadvantages, namely
ill-conditioning due to interpolation over small and irregularly shaped sub domains [11]. However, these
issues can be resolved by implementing stabilization methods [12, 13].

Much research has focused on the optimal design of linear elastic structures in contact with a rigid
obstacle, cf. the extensive survey by Hilding et al. [14]. Sizing, shape and Topology Optimization (TO)
problems have been solved to minimize the peak contact pressure, obtain a uniform pressure, maximize
stiffness, reduce weight, etc.

Topology optimization of structures subjected to contact have been formulated using different contact
models and/or optimization approaches. Klarbring et al. [15] solve truss TO design problems that include
unilateral contact boundary conditions. In this work, the design variables are the volumes of the bars and
the initial gaps between the contact nodes and the rigid obstacle. Petersson and Patriksson [16] apply
TO to design continuum structures in contact. To overcome the non-differentiability issues associated with
the contact constraints, they use a subgradient optimization algorithm and compute the optimal design
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as an average of the candidate designs that are generated in the subgradient calculations. Li [17] uses
an evolutionary approach to design linear elastic frame structures in contact. Fancello [18] combines the
Solid Isotropic Material with Penalization (SIMP) approach [19] and the ALM for the TO of structures
in contact subject to stress constraints. They assume differentiability and compute analytical sensitivities
using the adjoint method. The optimized designs are highly dependent on the initial design choice. This
nonuniqueness is attributed to the lack of differentiability of the contact problem as different contact surfaces
exist for each initial design resulting in drastically different sensitivities, which drive the optimization to
different local solutions.

Desmorat [20] models frictionless unilateral contact in the TO of continuum structures assuming the
contact pressure is derived from a potential function. Strömberg and Klarbring [21–24] compared topology
optimized designs obtained using Facchinei’s smoothing and augmented Lagrangian contact formulations.
They report that the latter is slightly more efficient. It is worth noting that [23] includes three-dimensional
examples and [24] considers an adjustable compliance-volume product as the cost function. Strömberg ex-
tended this approach to the TO of structures exhibiting frictional contact with a rigid support [25]. Mean-
while Bruggi and Duysinx [26] designed structures in unilateral contact by enforcing the contact conditions
via stress constraints over the contact surface. Luo et al. [27] use nonlinear springs to model frictionless
contact in the TO of hyperelastic structures.

TO has also been used to design compliant mechanisms which exhibit contact. Mankame and Anantha-
suresh [28] use a cross-constraint method, similar to the PM, to design mechanisms made of frame elements;
they extend this work to include large deformation in [29]. Kumar et al. [30] use circular masks to define
the material and rigid surface regions, and zero-order optimization algorithms to design 2D mechanisms.
This work is extended to include self-contact in [31].

TO problems of structures under contact have also been solved using the topological derivative in com-
bination with the level-set method [32–34]. Andrade-Campos et al. [35] use this approach to study the
remodeling behavior of bone, and Myśliński extends it to include friction [36, 37]. In [38], Lawry and Maute
combine an explicit level-set method with the XFEM to optimize multiple deformable bodies in contact.
This work was extended to design linear elastic contacting bodies in three-dimensions [39], and nonlinear
contacting bodies in two-dimensions [11]. These works do not use body fitted meshes, rather the shape of
the contacting surfaces are determined by evolving a well-defined interface via the optimization. Maury et
al. [40] combine the level-set method with the PM to shape optimize linear elastic structures in unilateral
contact. They consider five different friction models and use a commercially available finite element software
for their simulations.

Crashworthiness design is another area that TO has been applied. These design problems model a vehicle
and/or body impacting a rigid wall. The designs seek to maximize crash energy absorption and/or occupant
safety. These problems face many challenges due to the large computational cost of the analyses that are
needed to resolve geometric, material, and contact nonlinearities. Explicit time stepping algorithms are
typically used in the simulations as they avoid Newton iterations and their matrix inversion; however they
are limited to small time steps which is acceptable in these impact simulations. In an early study, Mayer et
al. [41] applied TO to maximize the crash energy absorption in a body rear rail using the homogenization
method, explicit time stepping, and the optimality criteria optimization algorithm. Pederson [42–44] uses
TO to design frame structures made of plastic beams that exhibit large deformations. This author uses
implicit time stepping and computes analytical sensitivities using the direct method. Alternate methods
have been adopted to simplify the problems and/or use heuristic non-gradient techniques to update the
designs, e.g., the hybrid cellular automata, evolutionary optimization, equivalent static loads, bubble and
graph methods [45–50]. For a detailed review of design for crashworthiness, the reader is referred to [51].

The literature review above discusses the most relevant work in the TO of structures in contact. They
are primarily restricted to two-dimensional linear elastic bodies in contact with rigid obstacles with the
exceptions of:

• [29] which includes large deformation,

• [23, 24, 40] that solve three-dimensional problems with rigid obstacles,
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• The crashworthiness studies in [41–50] that include three-dimensional problems with rigid obstacles
and geometrical and/or material nonlinearities and

• The design of multi-body structures in contact using XFEM in [11, 38, 39], where the contact surfaces
are defined with the level-set method.

As noted, the three-dimensional research is mainly limited to contact with rigid obstacles. XFEM shows great
promise to optimize three-dimensional multiple components in contact, but it needs further development to
solve problems in the finite strain regime [39].

Our research is devoted to combining TO with the state-of-the-art contact algorithms to design systems
with multiple deformable three-dimensional bodies in contact. Since the contact analysis is computationally
expensive, we use efficient optimization algorithms which require sensitivity analysis. Novel features of our
design optimization work include the use of

• large deformation continuum formulation that is suitable for the arbitrary discretization of three-
dimensional contacting bodies,

• the mortar segment-to-segment method [8] to discretize the contact equations and

• a B-spline [52] design parameterization to 1) reduce the number of design variables in comparison to
element-wise parameterizations and 2) formulate a well-posed TO problem.

We use body-fitted meshes with known contact mating surfaces, i.e., a priori known master and slave
surfaces. Additionally, we use the ALM to enforce the contact constraints, the analytical adjoint sensitivity
analysis of general functionals and the Interior Point Optimizer (IPOPT) for the gradient-based optimization
algorithm. Finally, we provide numerical examples. To reduce complexity, our study is limited to nonlinear
elastic bodies and frictionless contact. Incorporating plasticity and friction will be the focus of our future
work.

The remainder of the paper is organized as follows. Section 2 provides the terminology and definitions
for the nonlinear elasticity governing equation. In Sections 3–5, we formulate the contact problem and
sensitivity analysis and present various solution algorithms. The design optimization problem is presented
and examples are provided in Sections 6 and 7. Conclusions are drawn in Section 8.

2. Nonlinear elasticity

The body resides in the initial configuration Ω which is displaced into the deformed configuration ω by
the deformation ϕ : Ω → R3, cf. Figure 1. Under this deformation, material particles identified by the
reference location X ∈ Ω are displaced to x = ϕ(X) = X+u(X), where u is the displacement. As per usual,
the deformation gradient is F = ∇ϕ = I + ∇u, the right Cauchy–Green deformation tensor is C = F>F
and the Jacobian is J = det(F).

In the continuum setting we find the displacement field u such that

div P(F, ν) + b = 0 in Ω ,
P(F, ν) N = sp on At ,

u = up on Au ,
(1)

where1 P, b, sp and up are the first Piola-Kirchhoff stress, body force, prescribed traction and prescribed
displacement fields, and At and Au are complimentary surfaces of ∂Ω. N is the normal vector to the surface
∂Ω. In this elastic body, the stress P is a function of the deformation gradient F and the topology material
distribution ν. The latter is known in the elasticity analysis, but unknown in the optimization problem.

1For conciseness we suppress the spatial dependence on position X for all fields.
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In the weak formulation we find u ∈ W such that

rb(u,w) =

∫
Ω

∇w ·P(F, ν) dV −
∫

Ω

w · b dV −
∫
At

w · sp dA = 0 (2)

for all w ∈ W0 where W and W0 denote the trial and virtual solution spaces of the displacement field, i.e.,
W = {u ∈ H1(Ω) : u = up on Au} and W0 = {u ∈ H1(Ω) : u = 0 on Au}, dV and dA are the differential
volume and surface elements in the reference configuration. For future reference we call rb the bulk residual.

We solve for u via Newton’s method whereupon we update the current solution guess uI to uI+1 =
uI + ∆u where ∆u is the solution to the linear problem: find ∆u ∈ W0 such that

δrb(u
I ,w; ∆u) = −rb(uI) (3)

for all w ∈ W0. In the above,

δrb(u,w; ∆u) =

∫
Ω

∇w ·A(F, ν)[∇∆u] dV , (4)

where A(F, ν) = ∂P(F, ν)/∂F is the incremental elasticity tensor evaluated at F, ∆u is the finite displace-
ment increment and δrb(u,w; ∆u) = limε→0

1
ε (rb(u + ε∆u,w)− rb(u,w)) is the variation of r at (u,w)

with respect to u in the direction ∆u.2 When discretized δrb(u,w; ∆u) is the product of the tangent stiffness
matrix and the increment of the nodal displacement vector. This general continuum mechanics formulation
allows us to solve large deformation problems for elastic materials. We present the nonlinear material model
that is used in this manuscript in Appendix C.

3. Contact

Without loss of generality we assume we have two bodies Ω(1) and Ω(2) in contact. We subdivide each
body’s surface ∂Ω(i) into three complementary surfaces Au (i), At (i) and Γ(i); where Γ(i) is the surface over
which the contacting bodies potentially interact, cf. Figure 1. Typically, no external traction is applied over
the deforming contacting surface γ(i) however, a traction will be applied when contact is detected via the
contact gap constraint. The continuum form of the gap constraint is expressed

g(x, ȳ) ≤ 0 for all x ∈ γ(1) and candidate ȳ ∈ γ(2) , (5)

where x = ϕ(1)(X), ȳ = ϕ(2)(Ȳ), and Ȳ is defined by the outward normal projection, i.e., ȳ = ϕ(2)(Ȳ) is
the point established from the projection of x = ϕ(1)(X) onto γ(2) along the outward unit normal n(1)(x)
of the surface defined on γ(1) at x. Note that ȳ ∈ γ(2) is a function of x ∈ γ(1) and n(1). For notation
simplicity, the overline notation, e.g., ȳ, is used henceforth to represent such dependencies. The gap
constraint function g is further characterized by the following properties:

• If g(x, ȳ) = 0 the points x = γ(1) and ȳ = γ(2) are in contact, i.e., ϕ(1)(X) = ϕ(2)(Ȳ).

• If g(x, ȳ) < 0 points x and ȳ are separated by a gap.

• And finally, if g(x, ȳ) > 0 point x ∈ ω(1) would penetrate ω(2); violating the constraint (5).

The gap constraint is maintained by a contact pressure λ defined by either a Lagrange multiplier, penalty
function or both with the ALM. The inequality constraints defined by the contact gap function and the
pressure observe the following Karush-Kuhn-Tucker (KKT) complementary conditions which are necessary
for finding a local minimizer of the potential energy [4]

g(ϕ(1), ϕ̄(2)) ≤ 0 , λ ≤ 0 , λ g(ϕ(1), ϕ̄(2)) = 0 . (6a-c)

2Here and henceforth, the argument after semicolon in the variation represents the direction of the variation.
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These (6) conditions hold for all x ∈ γ(1) and ȳ ∈ γ(2).
Contact surfaces have classically been described by a slave-master side approach where the slave surface

γ(1) would be constrained to the master surface γ(2) in a one sided formulation. Two sided approaches [7]
symmetrize this slave-master approach allowing sides γ(1) and γ(2) to be both slave and master; unfortunately
these formulations often suffer from contact locking and pressure oscillations. Furthermore, traditional
approaches such as [7] employ a node-on-surface constraint discretization, i.e., the gap constraint (5) is
enforced point-wise only at select nodes. These methods are simple to implement but are not consistent and
consequently do not satisfy contact patch tests [4].

3.1. Discretized mortar formulation

The mortar contact method enforces the gap constraints weakly resulting in a consistent formulation
that satisfies patch tests and also “smooths out” the contact constraints leading to a more stable, accurate
and robust formulation. As we will see later, this smoothness also benefits the optimization process.
Indeed, as the design change between iterations, the contact constraints change smoothly, and accordingly,
the optimization exhibits smooth monotonic convergence.

In the mortar method, the gap function in (7a) measures the projected distance from the slave surface
γ(1) onto the master surface γ(2) along the slave surface normal vector. The contact pressure in (7b) is

interpolated from the node A finite element shape function N
(1)
A associated with the deformed slave surface

γ(1), and node A contact pressure λA, for each slave surface contact node A ∈ [1,Nc].

g(ϕ(1), ϕ̄(2)) = (ϕ(1) − ϕ̄(2)) · n(1) , (7a)

λ(ϕ(1)) =

Nc∑
A=1

N
(1)
A (ϕ(1)) λA , (7b)

To be clear, in the above, ϕ̄(2) = ϕ(2)(Ȳ) is the point on the deformed master surface γ(2) established from
the projection of the deformed slave surface point x = ϕ(1) to γ(2) along the outward unit normal n(1)(x).
The nodal, i.e., discrete, gap function gA is computed from the L2 projection of the gap function in (7a)
onto the slave surface, i.e.,

gA =

∫
γ

N
(1)
A (ϕ(1))(ϕ(1) − ϕ̄(2)) · n(1)(ϕ(1)) da . (8)

The nodal gaps gA and nodal pressures λA must satisfy the discrete KKT conditions (6)

gA ≤ 0 , λA ≤ 0 , λA gA = 0 . (9a-c)

These quantities are also used to define the discretized contact virtual work which will be employed in the
contact weighted residual rc in what follows, i.e.,∫

γ

λ δg(ϕ(1), ϕ̄(2); w(1),w(2)) da =

∫
γ

λn(1)(ϕ(1)) · (w(1) − w̄(2)) da (10)

=

∫
γ

Nc∑
A=1

N
(1)
A (ϕ(1)) λA n(1)(ϕ(1)) · (w(1) − w̄(2)) da

=

Nc∑
A=1

λA δgA(ϕ(1), ϕ̄(2); w(1),w(2)) ,

where w(i) is the weighting displacement for surface i and w̄(2) = w(2)(ϕ̄(2)) and δg(ϕ(1), ϕ̄(2); w(1),w(2)) =
limε→0

1
ε

(
g(ϕ(1) + εw(1), ϕ̄(2) + εw(2))− g(ϕ(1), ϕ̄(2))

)
is the variation of g at (ϕ(1), ϕ̄(2)) in the direction

(w(1),w(2)). It should be noted that the form of Equation (10) is an approximation to the extent that
δ
∫
γ
λ g da ≈

∫
γ
(λ δg + δλ g) da for large kinematics considering that g = 0 as per Equation (9c). This is
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to avoid expensive derivative calculations of the surface variation δγ for three dimensional implementations
[8, 53, 54].3 Finally, the implementation in this work exploits the segment-based integration [8] of (10) in
lieu of the element-based integration as discussed in [54]. Details regarding the derivation of the consistent
tangent for this formulation are provided in [8]. For conciseness, we henceforth reduce the notation of
g(ϕ(1), ϕ̄(2)) and δg(ϕ(1), ϕ̄(2); w(1),w(2)) to g(ϕ) and δg(ϕ; w).

3.2. Weak form of equations of motion with contact virtual work

Using (7) and (10), the contact constraint is incorporated into the elasticity equations where we now
find u(i) ∈ W and λ ∈ L2 such that

r(u, λ,w, β) = 0 =

2∑
i=1

[∫
Ω(i)

∇w(i) ·P(F(i), ν) dV −
∫

Ω(i)

w(i) · b(i) dV −
∫
At (i)

w(i) · sp (i) dA

]
+∫

γ

λ δg(ϕ; w) da+

∫
γ

β g(ϕ) da

= rb(u,w) + rc(u, λ,w, β) (11)

for all w(i) ∈ W0 and β ∈ L2. For conciseness, the bulk residual includes the contributions of each body,
i.e., rb(u,w) =

∑2
i=1 rbi(u

(i),w(i)). In the above we recall that, e.g., ϕ(1)(X) = X + u(1)(X) so that
∆ϕ(1)(X) = ∆u(1)(X). We also see the reactive tractions λ∂g/∂u(i) acting on γ = γ(i) which are necessary
to enforce the g = 0 constraint. For future reference, in the above we define the contact residual rc and the
net residual r.

To derive the tangent for the Newton iterations we note that

δr(u, λ,w, β; ∆u,∆λ) = δrb(u,w; ∆u) + δrc(u, λ,w, β; ∆u,∆λ) , (12)

where

δrc(u, λ,w, β; ∆u,∆λ) =

∫
γ

∆λ δg(ϕ; w) da (13)

+

∫
γ

λ δ2g(ϕ; w; ∆u) da

+

∫
γ

β δg(ϕ; ∆u) da

+

∫
γ

(λ δg(ϕ; w) + β g(ϕ)) divγ∆u(1)da ,

and divγ denotes the surface divergence operator. Note that δ2g(ϕ; w; ∆u) = d
dεδg(ϕ+ ε∆u; w) |ε=0 is the

variation of δg(ϕ; w) with respect to ϕ in the direction ∆u. Having δr we can perform Newton iterations
for the LMM by solving r + δr = 0 for the increment (∆u,∆λ) and updating (u, λ) ← (u, λ) + (∆u,∆λ).
Before proceeding to the next Newton iteration, the active set should be updated appropriately. Line search
is used within each Newton iteration to increase robustness.

4. Sensitivity analysis

Efficient sensitivity analysis is absolutely necessary for computationally viable design optimization. In
this section we present our adjoint sensitivity formulation. We discuss computational aspects in the following
section.

3It can be shown to approach the exact derivative as the mesh is refined
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(ξ1, ξ2)
S

Ω(1)

Γ(1)

X

Ω(2)

Γ(2)

Y

N(Y)

Y = Ψ(ξ1, ξ2)

ω(1)

γ(1)

x = ϕ(1)(X)

ω(2)

γ(2)

y = ϕ(2)(Y)

n(y)

y = ψ(ξ1, ξ2)

Undeformed Deformed

Figure 1: Contacting bodies in (left) undeformed and (right) deformed configurations. Red and black dashed lines denote the
slave and master (left) undeformed and (right) deformed surfaces.

For our design sensitivity analysis we consider variations of a general response function with respect
to the volume fraction ν which serves as the design field in the optimization problem. Notably the stress
P(F, ν) has both explicit dependence on ν as well as implicit dependence due to F. The response function
we consider is

θ(ν) =

2∑
i=1

∫
Ω(i)

π(u(i),∇u(i), ν) dV +

∫
γ

ζ (λ) da . (14)

Note that this functional incorporates the contact pressure which allows us to design for meaningful contact
responses, e.g., total contact force or contact force uniformity. The variation, i.e., sensitivity, of the above
is

δνθ =

2∑
i=1

∫
Ω(i)

(∇1π · δνu(i) +∇2π · ∇δνu(i) +∇3π δν) dV +

∫
γ

ζ ′δνλ da+

∫
γ

ζ divγδνu
(1)da , (15)

where, e.g., δνu
(i)(ν; δν) = d

dεu(ν + ε δν) |ε=0 is the variation of the displacement at ν with respect to δν.
To derive an expression for the sensitivity we use the adjoint method whereby we take the variation of

Equation (11) with respect to ν to obtain the identity

δνr(u, λ,w, β; δν) = 0 = δrb(u,w; δνu) +

2∑
i=1

∫
Ω(i)

∇wi · δνP dV + δrc(u, λ,w, β; δνu, δνλ)

= δr(u, λ,w, β; δνu, δνλ) +

2∑
i=1

∫
Ω(i)

∇wi · δνP dV , (16)

where δνP(F, ν; δν) is the variation of P at (F, ν) with respect to ν in the direction of δν, i.e., F is fixed.
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Subtracting the above zero quantity from δνθ gives

δνθ =

2∑
i=1

∫
Ω(i)

(∇1π · δνu(i) +∇2π · ∇δνu(i) +∇3π δν) dV +

∫
γ

ζ ′δνλ da+

∫
γ

ζ divγδνuda

−δνr(u, λ,w, β; δν) . (17)

Rearranging the above we obtain

δνθ =

2∑
i=1

∫
Ω(i)

(∇3π δν −∇w(i) · δνP) dV (18)

−
{
δr(u, λ,w, β; δνu, δνλ)−

2∑
i=1

∫
Ω(i)

(
∇1π · δνu(i) +∇2π · ∇δνu(i)

)
dV

−
∫
γ

ζ ′δνλ da−
∫
γ

ζ divγδνu
(1)da

}
.

We can annihilate the term in braces which contains the implicitly defined variations δνu
(i) and δνλ by

requiring the heretofore arbitrary w(i) ∈ W0 and β ∈ L2 to satisfy

δr(u, λ,w, β; δνu, δνλ) =

2∑
i=1

∫
Ω(i)

(
∇1π · δνu(i) +∇2π · ∇δνu(i)

)
dV (19)

+

∫
γ

ζ ′δνλ da+

∫
γ

ζ divγδνu
(1)da

for all δνu
(i) ∈ W0 and δνλ ∈ L2. Note that δr is the same variation that is used in the Newton iteration,

cf. Equation (12) so it is readily available. For more insight of this adjoint problem, we expand Equation
(19)

δrb(u,w; δνu) +

∫
γ

(
β δg(ϕ; δνu) + β g(ϕ) divγδνu

(1)
)

da (20)

+

∫
γ

λ δ2g(ϕ; w; δνu) da+

∫
γ

λ δg(ϕ; w) divγδνu
(1)da

+

∫
γ

δνλ

gadj︷ ︸︸ ︷
(δg(ϕ; w) − ζ ′) da

=

2∑
i=1

∫
Ω(i)

(
∇1π · δνu(i) +∇2π · ∇δνu(i)

)
dV +

∫
γ

ζ divγδνu
(1)da ,

to see that 1) ∇1π and ∇2π act as a body load and an initial stress in the adjoint problem, 2)

β δg(ϕ; δνu) +���
�: 0

β g(ϕ) divγδu
(1) is the source of the adjoint reactive traction that enforces the linear ad-

joint contact constraint gadj = δg(ϕ; w) − ζ ′ = 0 on w(1) and w(2) over γ, 3) this adjoint constraint involves
only bilateral constraints, i.e., there is no analogue to Equation (9), so β is interpreted as the adjoint La-
grange multiplier which can take both positive and negative values, 4) ζdivγδνu

(1) corresponds to an adjoint
surface load, 5)

∫
γ
λ δ2g(ϕ; w; δνu) da+

∫
γ
λ δg(ϕ; w) divγδνu

(1)da is an additional adjoint contact induced
stiffness over γ.

9



Upon solving the adjoint problem (19), the sensitivity reduces to

δνθ =

2∑
i=1

∫
Ω(i)

(∇3π δν −∇w(i) · δνP) dV . (21)

5. Solution algorithms

We can directly solve the above primal and adjoint saddle point problems of Equations (11) and (19).
Alternatively we can solve them via the penalty or augmented Lagrangian methods.

5.1. Penalty Method

In the PM we no longer have a constraint, per se. Rather for the primal analysis we define r as

r(u,w) = rb(u,w) +

∫
γ

λ̃ δg(ϕ; w) da , (22)

where

λ̃ =

Nc∑
A=1

N
(1)
A (ϕ(1)) ε〈gA〉 , (23)

ε is a fixed penalty parameter, and to consider only active constraints we invoke the Macauley bracket 〈 〉
representing the ramp function, i.e., 〈g〉 = g if g > 0, and 〈g〉 = 0 if g ≤ 0. Note that we replace the nodal
Lagrange multipliers λA with the penalized gaps such λA ≈ ε 〈gA〉, cf. Equations (7b) and 8.

We use Newton’s method to evaluate the u(i) that solves Equation (11) with the r of Equation (22). For
completeness we note that

δr(u,w; ∆u) = δrb(u,w; ∆u)

+

∫
γ

∆λ̃ δg(ϕ; w) da

+

∫
γ

λ̃ δ2g(ϕ; w; ∆u) da

+

∫
γ

λ̃ δg(ϕ; w) divγ∆u(1) da , (24)

where

∆λ̃ =

Nc∑
A=1

N
(1)
A (ϕ(1)) εH(gA) ∆gA (ϕ; ∆u) , (25)

and H is the Heaviside function, i.e., H(g) = 1 if g > 0 and H(g) = 0 if g < 0.
This approach poses no conceptual difficulty to the usual unconstrained sensitivity analysis, i.e., we

merely “turn the crank.” Specifically, we solve the adjoint problem of Equation (19) with the δr of Equation
(24) for w(i) and then evaluate the sensitivity of Equation (21).

5.2. Augmented Lagrangian Method

In the ALM, u(i) and λ are both evaluated, but they are not solved as a coupled problem via Newton’s
method. First a guess is taken for the nodal Lagrange multipliers λA and subsequently used to define the
residual Equation (22) where

λ̃ =

Nc∑
A=1

N
(1)
A (ϕ(1)) 〈λA + ε gA〉 , (26)

10



and again ε is a fixed penalty parameter. We then apply Newton’s method to solve Equation (22) for the
u(i). Using this u(i) we update the nodal Lagrange multipliers

λA ← 〈λA + ε gA〉 . (27)

The procedure of evaluating u(i) and updating λ̃ is repeated until convergence. And again for complete-
ness we note that the tangent operator is given again by Equation (24) where

∆λ̃ =

Nc∑
A=1

N
(1)
A (ϕ(1))H (λA + ε gA) ε ∆gA (ϕ; ∆u) . (28)

After convergence, Equation (11) is satisfied so no change is necessary for our adjoint sensitivity for-
mulation. However, if one is using the ALM to solve the primal problem it also makes sense to use it to
solve the adjoint problem. As such we solve the adjoint problem of Equation (19) by guessing a β and then
finding w(i) ∈ W0. To do this, we use the same finite element discretization of the primal analysis, so w is
the adjoint displacement and β is the adjoint Lagrange multiplier.

To reuse terms of the primal analysis, we compute the nodal adjoint constraint as

gadjA = δgA (ϕ; w)− ∂θ

∂λA
. (29)

We also replace βA with H(λA)
(
βA + ε gadjA

)
in the integral

∫
γ
β δg(ϕ; δνu) da =

∑Nc

A=1 βA δgA(ϕ; δνu)

that appears in Equation (20). Specifically, this integral
∫
γ
β δg(ϕ; δνu) da is replaced by the following

equation

Nc∑
A=1

H(λA)
(
βA + ε gadjA

)
δgA(ϕ; δνu) (30)

=

Nc∑
A=1

H(λA)

(
βA − ε

∂θ

∂λA

) ∫
γ

N
(1)
A (ϕ(1)) δg(ϕ; δνu)da

+

Nc∑
A=1

H(λA) ε

(∫
γ

N
(1)
A (ϕ(1)) δg (ϕ; w) da

)
δgA(ϕ; δνu)

=

∫
γ

β∗ δg(ϕ; δνu)da+

∫
γ

δλ̃ δg (ϕ; w) da ,

where β∗ =
∑Nc

A=1H(λA)
(
βA − ε ∂θ

∂λA

)
N

(1)
A (ϕ(1)) and δλ̃ =

∑Nc

A=1N
(1)
A (ϕ(1))H (λA) ε δgA (ϕ; δνu). Con-

11



sequently Equation (20), i.e., the adjoint problem, requires that we find w ∈ W0 such that

δrb(u,w; δνu) (31)

+

∫
γ

δλ̃ δg(ϕ; w) da

+

∫
γ

λ̃ δ2g(ϕ; w; δνu) da+

+

∫
γ

λ̃ δg(ϕ; w) divγδu
(1) da

=

2∑
i=1

∫
Ω(i)

(
∇1π · δνu(i) +∇2π · ∇δνu(i)

)
dV

−
∫
γ

β∗ δg(ϕ, δνu) da

+

∫
γ

ζ divγδνu
(1)da−

∫
γ
�
�>

0
β g divγδνu

(1)da

for all δνu
(i) ∈ W0. Using this w(i) we update

βA ← H(λA)
(
βA + ε gadjA

)
. (32)

The procedure of solving the linear problem of Equation (31) for w(i) and updating β is repeated until
convergence whereupon we compute the sensitivity of Equation (21).

Note that we have to iterate here to solve the linear adjoint problem. However, this may be a desirable
means to solve the saddle point problem, especially since the convergence is global and super linear [55].
Also note that the primal bilinear operator δr(u,w; ∆u) of Equation (24) that appears in the Newton
iteration for ∆u(i) does equal the adjoint bilinear operator, i.e., the left hand side of Equation (31), that
appears in the computation for w(i) upon convergence of the primal problem. So the adjoint tangent stifness
matrix is equivalent to the converged tangent stiffness matrix of the primal analysis. Further note that in
the primal ALM analysis the tangent matrix changes with each Lagrange multiplier update. This is not
the case in the adjoint ALM analysis, which uses a fixed tangent matrix and constraint active set, taken
from the converged primal analysis, for all the adjoint Lagrange multipliers updates. When using direct
solvers, this matrix is already available in factored form. It would also be possible to further reduce the
system by a Schur reduction to only contact degrees-of-freedom, as in [56], further reducing the cost of each
augmentation, though with additional upfront cost and complexity. Finally we note that we must subtract
the integral

∫
γ
β∗ δg(ϕ; δνu) da , cf. Equation (31), in the adjoint load linear term. Fortunately this integral

is similar to the
∫
γ
λ̃ δg(ϕ; w) da integral that appears in the primal analysis residual Equation (22). The

adjoint load has two additional terms
∫
γ
ζ divγδνu

(1)da and −
∫
γ
β g divγδνu

(1)da where the latter is zero
upon convergence since again β is zero where the constraint is inactive, i.e., βAgA = 0.

The finite element analysis of the adjoint problem using the ALM is summarized in Algorithm 1. The
adjoint load, i.e., right hand side of Equation (31), is discretized as δνU

>Fadj . We solve the linear adjoint
problem with the same tangent stiffness matrix K which is derived from the δr of Equation (24) of the ALM
primal problem. This process is repeated until the norm of the adjoint constraint is satisfied to within a
user-defined tolerance, i.e., |Gadj | < εadj where Gadj = [gadj1 , gadj2 , . . . , gadjNc

]>.
As discussed on numerous occasions, non-differentiability occurs in cases of strict complementary, i.e.,

λA = 0 and gA = 0. We assume this case is rare in practical computations. Nevertheless, in our algorithm,
if a node has zero pressure, i.e., λA = 0, it is treated as an inactive constraint. For validation, we compare
our computed sensitivities with the sensitivities obtained by finite differences. These computations agree to
within small discrepancies that are attributed to the truncation and round–off errors of the finite difference
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Algorithm 1: Adjoint sensitivity analysis for ALM

compute θ, ∂θ/∂U, ∂θ/∂Λ ;

initialize W0 and β0 to zero;
do

compute Gadj ;

update βA ← H(λA)
(
βA + ε gadjA

)
;

solve K>Wj+1 = Fadj for Wj+1 ;

while |Gadj | > εadj ;

computation. We attribute this accuracy to the use of the mortar segment-to-segment method principally
because if a new node is introduced to the active set of the contact surface there is a smooth variation of
the contact forces.

6. Optimization problem

In the usual topology optimization strategy known as the density method, the design domain Ωd is
defined by piecewise uniform element volume fraction field which equals νe over each element Ωe of the finite
element mesh over the hold-all domain Ω such that Ωd =

⋃
e3 νe=1 Ωe. In this representation, designs do not

converge as the mesh is refined. It is well known that more holes appear as the mesh is refined, and ‘checker
board’ patterns appear. Consequently, this representation requires length scale control to define a well-posed
topology optimization problem [57, 58]. Several such controls have been proposed in the literature, e.g.,
filtering, perimeter constraint, and slope constraint. For instance, in the filtering approach [57], a smoothed
volume fraction ν̃ replaces the ν in the previous equations. The smoothing is obtained through a filter such
that

ν̂(X) =

∫
Br(X)

k(|Y −X|) ν(Y) dV , (33)

where k is a suitable kernel function and Br(X) is a ball of radius r centered at X. For the computations
we use an element-wise uniform parameterizations for ν and ν̂; the latter are evaluated at the element
centroids Xi using a one-point quadrature to approximate the integral ν̂(Xi) =

∫
Br(X)

k(|Y−Xi|) ν(Y) dV .

Ultimately, we obtain the relation ν̂ = Gd where Gij = k(Xi−Xj)|Ωj | if |Xi−Xj | ≤ r otherwise Gij = 0,
|Ωj | is the volume of the element Ωj , and d = ν is the design variable vector, i.e. element volume fractions.

An alternative to these length scale control techniques is to use a design parameterization that is in-
dependent to the finite element mesh and that also enforces length scale control. In our work, we define
Ωd using an implicit function φ via the level-set method, i.e., Ωd = {X ∈ Ω |φ(X) ≥ 0}. This level-set
representation allows us to do shape, material, and topology optimization [59]. For the optimization, we
parameterize φ, via B-splines [52] such that we now have

φ(X,d) = d>N̂(X) , (34)

where N̂(X) = [N̂1(X), N̂2(X), ..., N̂n(X)]> is the vector of B-spline basis functions, and d = [d1, d2, ..., dn]>

is the vector of control points , i.e. design variables. Now the “height” components di of d replace the element
volume fraction parameters di = νi as the design variables. In this way, we do not need to introduce other
restriction methods, e.g., filters, to formulate a well–posed TO problem. Notably, the cost associated with
filtering is replaced by the cost of the B-spline computations which is small since our tri-cubic B-spline is
defined over a rectangular cuboid with dimensions hx, hy, and hz in the respective directions, cf. Appendix
B. Similar to the density method, for computation we again assume element-wise uniform level-set and
volume fraction parameterizations, and similar to the filter we first evaluate φ = Gd where G is a nfea×nd
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matrix such that Gij = N̂j(Xi) if j is a local control point for Xi, otherwise Gij = 0, where Xi is the element
Ωi centroid. The computation of G is straightforward and does not require knowledge of the connectivity
between the elements in the finite element mesh. This is specially advantageous for unstructured meshes.
Finally, the number of nonzero matrix elements in G is dictated by the number of local control points nc
per B-spline basis functions and the number of finite elements, i.e., nfea × nc.

We define the volume fraction via φ and the smoothed Heaviside function

ν(X,d) = Hη(φ(X,d))

=
1

2
+

1

2
tanh (η φ(X,d)) , (35)

where η governs the smoothness such that Hη approximates the Heaviside as η →∞. Note that the volume
fraction is continuous and independent of the finite element mesh. Since we restrict the control points to
di ∈ [−1, 1] and use tri-cubic B-splines, the gradient |∇φ| ≤ 27/(8hxhyhz) is bounded and hence so is
|∇ν| = H ′η(φ)|∇φ|. In this way, the B-spline parameterization necessarily enforces a “slope” constraint [60],
and prohibits small features, and thus renders a well-posed TO problem as dictated by the values of hx, hy,
hz, and η.

In our SIMP/ersatz approach, we define

ν̃ = (1− ν0) νp + ν0 , (36)

where ν0 is the “small” lower volume fraction limit and p is the penalty parameter. Using the above, the
material response is weighted by ν̃ , i.e.,

W ∗ = ν̃ W , (37)

P(F, ν̃) = ν̃∇W (F) , (38)

DP(F, ν̃) = ν̃ D2W (F) , (39)

where W is the hyperelastic energy function for the “stiff” material. For details of the hyperelastic energy
function used in our examples please refer to Appendix C.

In this erzatz approach, the contact conditions are satisfied for all contact surface regions regardless of
their volume fraction. However, if a void region experiences contact, i.e., the gap is zero, the corresponding
pressure Lagrange multipliers are small.

Note that the contact, sensitivities, and material model formulation is general, so we can use any param-
eterization for ν̃. For comparison purposes, we will use both, the density method of Equation (33) and the
B-spline representation of Equation (34) in our examples. To have a fair comparison, the design field has the
same lower and upper bounds, i.e., d : Ω → [−1, 1], and both methods use the threshold and penalization
Equations (35) and (36). For the density method, the element volume fraction is computed by first filtering
the element design parameters to obtain the element level set values φ = Gd and subsequently the element
volume fractions are evaluated via Equations (35) and (36).

Our general topology optimization problem is defined as

min
d

f

subject to gj ≤ 0, j = 1, 2, ...,m .
(40)
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In the examples, we use the following cost functions,

fa = −
∫
ω

W ∗dv , (41)

fb =

2∑
i=1

[∫
Ω(i)

u(i) · b(i) ν dV +

∫
At (i)

u(i) · sp (i) dA

]
, (42)

fc = −
∫
γ

λda , (43)

where fa is the negative of the strain energy, fb the compliance, and fc the negative of the total contact
force (cf. Appendix A). The negative signs in Equations (41) and (43) imply that we are maximizing the
strain energy and maximizing the total contact force.

For the constraint, we use the usual total volume fraction constraint wherein

g1 =
1

|Ω|

∫
Ω

ν dV − νmax . (44)

7. Examples

In the following subsections, we generate optimal topologies applying the presented method. All the struc-
tures are modeled using the neo-Hookean hyperelastic material [61] described in Appendix C. We specify
the Young’s modulus E and Poisson’s ratio ν so that the shear and bulk moduli are µ = E/(2(1 + ν)) and
κ = E/(3(1−2ν)). We use the finite element software NIKE3D [62] for the finite element simulation since it
has contact analysis capabilities. The finite element simulations use (8-noded) tri-linear hexahedral elements
and the NIKE3D ALM and mortar segment-to-segment methods [8] to enforce the contact constraints with
the ALM penalty parameter ε = 10. We model the level-set function with tri-cubic B-splines, cf. Appendix
B. The SIMP penalization power is p = 3, the lower limit for the penalized volume fraction is ν0 = 10−2 and
the Heaviside parameter is η = 10. We employ the nonlinear programming software IPOPT [63] to solve
the optimization problems. IPOPT converges successfully if the norm of the Karush-Kuhn-Tucker (KKT)
optimality conditions is smaller than the tolerance εopt = 10−3 (cf. Equations (5) and (6) in [63]), unless
otherwise stated.

7.1. Cylindrical die pressed into a rectangular domain

In this example, a stiff cylindrical die with Young’s modulus E = 1000 and Poisson’s ratio ν = 0.3 is
pressed into a compliant rectangular slab with E = 1 and ν = 0.3 that is fixed at its bottom surface, cf.
Figure 2. The die is initially resting on top of the slab before its contact lines displaces -0.6 units in the
vertical, i.e., z direction, cf. Figure 3. 12×8×1 and 23×10×8 finite element meshes are used to model the
die and the slab. The slab serves as the hold-all domain Ω in which we optimize the material distribution
to define Ωd so as to minimize fa/|f0

a |, i.e., maximize the strain energy, subject to a maximum volume
constraint νmax = 0.4 where the nominal, i.e., full volume, strain energy of the slab is |f0

a | = 5.014× 10−2.
For comparison purposes, we solve this TO problem with the B-spline parameterization and the more

common element-wise parameterization density method. In the latter, every finite element has its own
volume fraction parameter νe rendering 1840 = 23 × 10 × 8 design variables. The length scale control on
the element-wise problem is obtained via filtration with a cone filter radius of rf = 0.7 units [57]. Figure 4a
illustrates the optimized filtered volume fractions ν̃e wherein white, gray, and black represent void, porous,
and solid material regions respectively. For the B-spline optimization, we model the level-set function φ
using tri-linear B-splines via 728 = 13 × 8 × 7 control points, i.e., design variables, which corresponds to
hx = 0.9, hy = 0.8, and hz = 0.75. The optimal design for this case, cf. Figure 4b, exhibits a smooth
well-defined boundary. We repeat this problem for a finer slab element mesh, cf. Figure 5, containing
13500 = 45× 20× 15 finite elements. The results are summarized in Table 1 where It., nd, and nfea refer to
the number of optimization iterations, the number of design variables, and the number of finite elements.
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For a coarse mesh, the number of iterations for the density method and the B-spline approach are similar
(15 and 19, respectively). However, for the refined mesh case, the B-spline approach maintains a similar
number of iterations (13) whereas the density approach requires significantly more (41) and in addition the
number of filter matrix elements is surprisingly large. We attribute the difference in computational cost
to the additional nonlinearities in the design via the cubic nature of the splines. However for the refined
mesh, the B-spline design uses less number of design variables compared to the density method resulting in
a better efficiency. We also note that the filter and B-spline length scales are controlled in different manners,
although we selected the filter radius and B-spline grid so as to obtain similar designs. The difference
in feature resolution between these two methods might account for the slightly better design performance
obtained by the B-spline method in this case.

The number of nonzero filter matrix elements in G is small for the density method with coarse mesh.
As a result, we notice a few gray elements, cf. Figure 4a. Ideally there would be no gray elements as they
indicate regions partially filled with material which we do not allow. As expected, as we refine the mesh
and maintain the same filter size the number of nonzero filter matrix elements increases and hence more
gray elements appear (albeit they are smaller). As mentioned before, the B-spline parameterization can also
be obtained via a G “filter” matrix. For our tri-cubic B-spline parameterization, the number of nonzero
G matrix elements is given by the number of control points per B-spline basis function and the number of
finite elements, i.e., nfea × 64.

In this example, every primal analysis requires 6 loading steps which collectively require 100 Newton
iterations and 18 pressure Lagrange multipliers updates, cf. Equation (27). On the other hand, the adjoint
analyses requires 5 linear solutions for the Lagrange multipliers updates. Furthermore, the adjoint solution
reuses the tangent stiffness matrix from the converged primal analysis so as expected, the computational
cost for the adjoint analysis is far smaller than the primal analysis.
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Figure 2: Cylindrical die pressed into design domain (a) isometric and (b) lateral view.

We now study the effect of the Heaviside function wherein we solve the previous problem over the fine
mesh with different parameters η = 4, 6, 8, 10, 12 for the B-spline approach, cf. Table 2. Figure 6 shows
the optimal designs’ isosurfaces corresponding to volume fractions ν = 0.1 in green and ν = 0.9 in red.
The region between these two surfaces contains the gray, i.e., porous material; it shrinks as η increases.
Additionally, the designs with larger η values have better performance (more optimal fa) as smaller features
are permitted. However, a very large η causes numerical issues as the accuracy of the sensitivity computations
erode. Indeed, in the extreme case whereby we replace Equation (35) with the Heaviside, we obtain zero
sensitivities at all integration points save those on the boundary and at those points the derivative contains
the Dirac delta function.
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(a) (b)

Figure 3: (a) Deformed configuration for the cylindrical die pressed into design domain (b) using a refined mesh.

Table 1: Optimal design summary for cylindrical die problem.

Method fa/|f0
a | It. rf # nonzero filter nd nfea

matrix elements

Density -0.9889 41 0.7 2 009 512 13500 = 45× 20× 15 13500 = 45× 20× 15
Density -0.9819 15 0.7 41 272 1840 = 23× 10× 8 1840 = 23× 10× 8
B-spline -0.9939 13 - 864 000 728 = 13× 8× 7 13500 = 45× 20× 15
B-spline -0.9908 19 - 117 760 728 = 13× 8× 7 1840 = 23× 10× 8

(a) (b)

Figure 4: Optimal topology designs (a) filtered volume fraction (b) B-spline zero-level set for the cylindrical die problem.
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(a) (b)

Figure 5: Optimal topology designs (a) filtered volume fraction (b) B-spline zero-level set for the cylindrical die problem using
a refined mesh.

It is worth noting that the optimizer mainly updates the gray regions because of their nonzero gradients,
cf. Equation (35). And since the gray region is penalized by the SIMP, the optimizer places material
judiciously, reducing the extent of gray region and thereby generating a predominantly black/white design.
For this reason, our initial design is totally gray, i.e., di = log(νmax/(1−νmax))/2η, which reduces the initial
design dependency and satisfies the volume fraction constraint.

Table 2: Optimal design summary for cylindrical die problem corresponding to different η.

fa/|f0
a | It. η

-0.9778 13 4
-0.9892 11 6
-0.9904 21 8
-0.9939 13 10
-0.9958 14 12
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(a) (b)

(c) (d)

Figure 6: Optimal topology designs’ isosurfaces corresponding to volume fractions ν = 0.1 in green and ν = 0.9 in red for the
cylindrical die problem with B-spline approach (a) η = 4, (b) η = 6, (c) η = 8, and (d) η = 12.
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7.2. Cylindrical die pressed into a cantilever beam

We repeat the previous example with a different boundary condition in which the now cantilevered slab
is fixed over the right rather than the bottom face, cf. Figure 7. Figures 8 and 9 show the optimal designs
obtained using the density and B-spline parameterizations, respectively. Table 3 summarizes the numerical
results obtained from the 45× 20× 15 finite element mesh.

In comparison to the previous fine-mesh case, the density method requires fewer iterations (11 versus
41) and the B-spline method more iterations (23 versus 13), though the total number of iterations for
each method remain comparable. In this case, however, the B-spline and density designs have the same
performance (attain minimum fa).

Figure 7: Deformed configuration for the cylindrical die pressed into a cantilever slab.

Table 3: Optimal design summary for cylindrical die pressed into a cantilever slab problem.

Method fa/|f0
a | It. rf # nonzero filter nd

matrix elements

Density -0.6974 11 0.7 2 009 512 13 500 = 45× 20× 15
B-spline -0.6928 23 - 864 000 728 = 13× 8× 7
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 8: (a) Optimal topology design for cylinder in contact with cantilever slab using the density parameterization. Cuts at
(b) x1 = 2.75, (c) x1 = 3.5, (d) x1 = 5, (e) x1 = 6, (f) x1 = 7, and (g) x1 = 8.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 9: (a) Optimal topology design for cylinder in contact with cantilever slab using the B-spline parameterization. Cuts
at (b) x1 = 2.75, (c) x1 = 3.5, (d) x1 = 5, (e) x1 = 6, (f) x1 = 7, and (g) x1 = 8.
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7.3. Contact force

We next maximize the total contact force, cf. Equation (43), solving the same cylindrical die pressed
into the rectangular slab from the Subsection 7.1 using exclusively the B-spline method. Figure 10 shows
the optimal topology obtained from the 45 × 20 × 15 mesh. As expected, the design is similar as those
obtained for maximum strain energy. Figure 11a shows the optimization history for each nodal contact
pressure λA. Every colored line connects the values of λA between successive design iterations. Figure 11b
shows the optimization history of the cost function. The contact pressure distribution is smooth as can be
seen in Figure 10c. Note that the initial design has a uniform ν = 0.4 volume fraction whereby the SIMP
makes the slab very soft which results in small contact pressures (Λi ≈ 10−2). The optimization process
appears to be smooth even though the pressure Lagrange multipliers switch from active to inactive and vice
versa which present significant challenges to the optimization. We attribute this smoothness to the mortar
segment-to-segment method, since the nodal contact pressures do not jump appreciably as nodes slide on/off
the contact surface.

(a) (b)

0

0.1

0.2

0.3

(c)

Figure 10: Optimal topology design for maximum total contact force for the cylindrical die pressed into a rectangular slab (a)
B-spline zero-level set, (b) deformed configuration, and (c) contact pressure distribution.
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(a) (b)

Figure 11: (a) Nodal pressure Lagrange multipliers and (b) normalized cost function (negative of total contact force) optimiza-
tion histories for the cylindrical die pressed into rectangular slab problem.

7.4. Sabot

In this final example, we design a sabot, which is a device that ensures the correct position of a cylindrical
slug traveling down an oversized annulus, as in the case of a winged projectile traveling down a launch tube.
The aluminum slug (E = 69GPa, ν = 0.33) is modeled as a cylinder of radius 25.3mm. We model the sabot
as a ring made of fiber reinforced isotropic composite (E = 6GPa, ν = 0.33), whose inner radius (25.4mm)
is in contact with the slug and whose the outer radius (50.7mm) is in contact with the annulus. The steel
annulus’ (E = 210GPa, ν = 0.26) inner and outer radii are 50.8mm and 76.2mm, respectively. The length
of each body is 50.8mm and for the purposes of the analysis the axis of the annulus is aligned in the e3

direction. We fix the radial and tangential displacement on the outside boundary of the annulus. Since we
need to constrain axial motion, we can constrain one node per body in this direction. However, we take
advantage of domain symmetry and only model the upper half of the domain and impose axial constraints
on the bottom surfaces of the three bodies. To prevent rigid body rotations of the slug and the sabot, we
constrain motion in the y direction on two points in each body, cf. points A, B, C, and D in Figure 13. The
slug can experience a 10000g acceleration in any transverse direction, where g is the acceleration of gravity.
We mimic the acceleration in the e1 direction using the inertia relief method. Since our model is frictionless,
we do not introduce axial loads. The slug, sabot and barrel are discretized via 10780, 46816, and 13552
finite elements, cf. Figure 13.

To accommodate the unknown loading direction, we enforce cyclic symmetry of the design. In addition,
we enforce reflection symmetry about each sector’s midplane. To do this, we define the level-set function
such that φ(r, α) = φ(r, α∗), for α∗ = |mod(α+ β/2, β)− β/2|, where β = 2π/np and np = 5 is the number
of polar sectors. For example, φ(r, α) is equal for α = −10◦, 10◦, 62◦, 82◦, 134◦, 154◦, 206◦, 226◦, 278◦, 298◦,
cf. Figure 12. We model φ with 396 = 11 × 6 × 6 design variables over a rectangular cuboid grid that
encompasses half of the first sector, cf. the gray region in Figure 12. To obtain a “skin” around the design,
we enforce the sabot to be solid in the regions where r < ri = 28.575mm and r > ro = 47.625mm. To do
this, we define the inner and outer skin level-set functions

φi(X) = m
(
ri −

√
(X · e1)2 + (X · e2)2

)
,

φo(X) = m
(√

(X · e1)2 + (X · e2)2 − ro
)
, (45)

where m = 5. We then use Boolean operators to define the design level-set function φ̃ from which the volume
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fraction ν is evaluated, i.e.,
φ̃(X,d) = φ(X,d) ∨ (φi(X) ∨ φo(X)) , (46)

where ∨ is the logical disjunction operator, i.e., max function. We replace the max function with the R-
function φa ∨o φb = 1

2 (φa + φb +
√

(φa − φb)2 + εφ −
√
εφ) which as explained in [64] is positive valued if

φa > 0 or φb > 0. To make this function differentiable at all pairs (φa, φb), we add the εφ = 10−4 > 0 term.
We minimize the compliance and limit the total volume fraction of the sabot to νmax = 0.5. The

optimization converges in 25 iterations to a topology that resembles a wheel with hollow spokes, cf. Figure
14.

Figure 12: Cyclic symmetry.
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Figure 13: Stress distribution for the nominal design filled with material for the sabot problem.
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(a) (b)

(c) (d)

Figure 14: Optimal topology design for the sabot problem (a) isometric and (b) top views at x3 = 25.4mm, and (c) isometric
and (d) top views cut at x3 = 6.3mm.
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8. Conclusions

In this paper, we use state-of-the-art contact and efficient optimization algorithms to solve topology
design problems with multiple three-dimensional deformable components in contact. Our simulation is
based on a general continuum formulation of the contact model to make it suitable to large deformation
problems. To solve the governing equation, we use the ALM due to its robustness and accuracy.

The optimization problem is solved with nonlinear programming algorithms so efficient sensitivity com-
putations are essential. An analytical adjoint sensitivity analysis for general functionals is formulated using
the continuum formulation. And because we use the ALM to solve the primal analysis, we also use it to
solve the adjoint problem. This requires an iterative solution of the linear adjoint problem. Fortunately, the
adjoint analysis reuses the tangent stiffness matrix from the primal analysis and converges quickly.

The mortar segment-to-segment method is used to discretize the contact problem so that the contact
forces vary smoothly. As such, the optimization history is well-behaved since the contact pressures do not
jump as nodes slide on/off the contact surface.

Our topology optimization uses a B-spline design parameterization independent of the finite element
discretization. This representation naturally regularizes the TO problem and ensures satisfaction of an
implicit slope constraint that eliminates small features. The B-spline representation also requires fewer
design variables compared to the usual element-wise parameterizations. Furthermore, we have a precise
description of the design boundary.

Modeling contact allows us to design with more meaningful response measures, e.g., on the total contact
force or uniformity of the contact force. Our formulation accommodates such responses. Example problems
that maximize the total contact force, maximize the strain energy, and minimize the compliance demonstrate
the efficacy of our method.

For future work, the authors will incorporate Coulomb friction [9].
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Appendices

A. Total contact force

The surface integral of Equation (43) is computed over the non-mortar (slave) surface γ = γ(1) as

fc =

nf∑
f=1

∫
ξ

λ (x(ξ))

∣∣∣∣ ∂x

∂ξ1
∧ ∂x

∂ξ2

∣∣∣∣ dξ , (A.1)

where nf is the number of finite element facets on the slave surface, ξ is the iso-parametric surface coordinate
vector, λ = M (ξ) Λf is the pressure Lagrange multiplier field, Λf = [λ1, λ2, λ3, λ4]> is the element facet
vector of nodal Lagrange multipliers, M(ξ) = [M1(ξ),M2(ξ),M3(ξ),M4(ξ)] is the element facet vector of
basis functions, x = xf M>(ξ) is the deformed material point position, xf = [x1 x2 x3 x4] is the 3 × 4
matrix of deformed nodal coordinates of the facet f , and for conciseness we drop the superscript “(1),” i.e.,

x = x(1) and ξ = ξ(1). The derivatives of x, i.e., the surface tangent vectors, are[
∂x

∂ξ1

∂x

∂ξ2

]
= xf

∂M>

∂ξ
= xf B̃ , (A.2)

28



where B̃ is a 4× 2 matrix. We rearrange the above in vector form as

∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ1
∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ2


=
(
B̃> � I

)
vec(xf ) =


B11

B21

B31

B12

B22

B32

 vec(xf ) , (A.3)

where � is the Kronecker product, I is 3 dimensional identity matrix and the Bij are 1× 12 row vectors.
We next define the surface metric

s =

∣∣∣∣ ∂x

∂ξ1
∧ ∂x

∂ξ2

∣∣∣∣ =

√(
∂x1

∂ξ1

∂x2

∂ξ2
− ∂x1

∂ξ2

∂x2

∂ξ1

)2

+

(
∂x1

∂ξ2

∂x3

∂ξ1
− ∂x1

∂ξ1

∂x3

∂ξ2

)2

+

(
∂x2

∂ξ1

∂x3

∂ξ2
− ∂x2

∂ξ2

∂x3

∂ξ1

)2

,

(A.4)
to express the derivatives of the total contact force as

∂fc
∂Λf

=

n∑
f=1

∫
ξ

M> s dξ , (A.5)

∂fc
∂Uf

=

n∑
f=1

∫
ξ

λ
∂s

∂Uf
dξ , (A.6)

where

∂s

∂Uf
=

1

s

(
B>11

∂x2

∂ξ2
+
∂x1

∂ξ1
B>22 −B>12

∂x2

∂ξ1
− ∂x1

∂ξ2
B>21 + B>12

∂x3

∂ξ1
+
∂x1

∂ξ2
B>31

−B>11

∂x3

∂ξ2
− ∂x1

∂ξ1
B>32 + B>21

∂x3

∂ξ2
+
∂x2

∂ξ1
B>32 −B>22

∂x3

∂ξ1
− ∂x2

∂ξ2
B>31

)
. (A.7)

Equations (A.5) and (A.6) represent
∫
γ
ζ ′δνλ da and

∫
γ
ζ divγδνu

(1)da in Equation (19) respectively.

B. Tri-cubic B-spline

For three-dimensions, the shape functions for uniform tri-cubic B-spline over the [−1, 1]3 domain are
obtained from the outer product of the one-dimensional B-spline functions, i.e.,

N̂(ξ) =



N̄1(ξ1)N̄1(ξ2)N̄1(ξ3)
N̄1(ξ1)N̄1(ξ2)N̄2(ξ3)
N̄1(ξ1)N̄1(ξ2)N̄3(ξ3)

...
N̄4(ξ1)N̄4(ξ2)N̄4(ξ2)


.

If we have a rectangular cuboid domain with uniform nx×ny ×nz patches, there is a total of (nx + 3)(ny +
3)(nz + 3) control points.

We use an isoparametric mapping to define the level–set function φ. Given the physical control point
coordinates X̂i = [X̂1 X̂2 ... X̂64]> for a patch i, and a position X in the patch, the level–set function φ is
defined such that

φ(X)|X=X̂>
i N̂(ξ) = d>i N̂(ξ) , (B.1)
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where di is the 64×1 vector of height parameters for the patch i. Since we use a rectangular cuboid domain,
the inverse mapping is straight forward

ξ = 2 diag

(
1

hx
,

1

hy
,

1

hz

)
(X−Xc) (B.2)

where Xc and hx, hy, and hz are the center location and the edge lengths of the patch in the ê1, ê2, and ê3

directions, Figure B.1.

Figure B.1: Rectangular grid of patches in physical coordinates and mapping to the reference coordinate system.

C. Energy functional and stress

In this appendix, we describe the hyperelastic material model used in the examples of this paper. In
addition to the relations described in Section 2, we define the isochoric part of F as F̄ = J−1/3F, i.e.,
det
(
F̄
)

= 1. With F̄, we construct C̄ = F̄>F̄ = J−2/3C.
We consider a hyperelastic material that uses the so-called F-bar element formulation presented by Simo

and Taylor [65] to provide nearly incompressible behavior while avoiding locking. Using this kinematic
description, a Mooney-Rivlin material has the strain energy density functional of the form

Ŵ (C) = U (J) + Φ (C) , (C.1)

where U (J) and Φ (C) represent the volumetric and deviatoric parts of Ŵ (C) respectively. The volumetric
part is defined by

U(J) =
1

2
κ (ln J)

2
, (C.2)

where κ is interpreted as the bulk modulus and represents a penalty parameter to achieve incompressibility
via the penalty method. The deviatoric part is

Φ (C) = Φ̂
(
Ī1(C̄), Ī2(C̄)

)
= A

(
Ī1
(
C̄
)
− 3
)

+B
(
Ī2
(
C̄
)
− 3
)
, (C.3)
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where A and B are material coefficients, and Ī1
(
C̄
)

= tr
(
C̄
)

and Ī2
(
C̄
)

= 1/2[
(
Ī1(C̄)

)2 − tr
(
C̄2
)
] are the

first and second invariants of C̄. This model differs from the standard Mooney-Rivlin form in that Ī1 and
Ī2 are invariants of the deviatoric right Cauchy-Green tensor.

For the finite element implementation, the Jacobian J is replaced with Θ which, to avoid locking, is
defined as the average Jacobian over the finite element Ωe, i.e.,

Θ =
|ωe|
|Ωe|

. (C.4)

In the incompressible limit, the values of J and the relative volume Θ approach unity, and the standard
Mooney-Rivlin model is recovered.

The hyperelasticity assumption and objectivity require

P(F) = ∇W (F)

= 2 F∇Ŵ (C) , (C.5)

where W (F) = Ŵ (C). As such

DP(F) = D2W (F)

= 2 I �∇Ŵ + 4 (F � I)D2Ŵ (C)(F � I)> , (C.6)

where � represent the conjugation product with components (A � B)ijkl = AikBjl.

Note that for C = I, we have zero residual stress as ∇Ŵ = 0 and the linearized elasticity tensor

C = 4D2Ŵ |C=I = 4(A+B)I+

(
κ− 4

3
(A+B)

)
I⊗ I . (C.7)

For isotropy C = 2µI+λI⊗I, so for consistency with linear elasticity, it is necessary that the shear modulus
is µ = 2(A+B) and that κ− 4

3 (A+B) = κ− 2
3µ = λ.
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[56] P. W. Christensen, A. Klarbring, J. S. Pang, N. Strömberg, Formulation and comparison of algorithms for frictional
contact problems, International Journal for Numerical Methods in Engineering 42 (1) (1998) 145–173.

[57] T. E. Bruns, D. A. Tortorelli, Topology optimization of non-linear elastic structures and compliant mechanisms, Computer
Methods in Applied Mechanics and Engineering 190 (26) (2001) 3443–3459.

[58] M. Bendsoe, Topology optimization: theory, methods and applications, Springer, 2003.
[59] J. Norato, R. Haber, D. Tortorelli, M. P. Bendsøe, A geometry projection method for shape optimization, International

Journal for Numerical Methods in Engineering 60 (14) (2004) 2289–2312.
[60] J. Petersson, O. Sigmund, Slope constrained topology optimization, International Journal for Numerical Methods in

Engineering 41 (8) (1998) 1417–1434.
[61] J. C. Simo, T. J. Hughes, Computational inelasticity, Vol. 7, Springer Science & Business Media, 2006.
[62] M. Puso, B. N. Maker, R. M. Ferencz, J. O. Hallquist, NIKE3D: a nonlinear, implicit, three-dimensional finite element

code for solid and structural mechanics, Users Manual.
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