DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterizing TES power noise for future single optical-phonon and infrared-photon detectors

Abstract

In this letter, we present the performance of a $$100~\mu\mathrm{m}\times 400~\mu\mathrm{m} \times 40~\mathrm{nm}$$ tungsten (W) Transition-Edge Sensor (TES) with a critical temperature of 40 mK. This device has a measured noise equivalent power (NEP) of $$1.5\times 10^{-18}\ \mathrm{W}/\sqrt{\mathrm{Hz}}$$, in a bandwidth of $2.6$ kHz, indicating a resolution for Dirac delta energy depositions of $$40\pm 5~\mathrm{meV}$$ (rms). The performance demonstrated by this device is a critical step towards developing a $$\mathcal{O}(100)~\mathrm{meV}$$ threshold athermal phonon detectors for low-mass dark matter searches.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [2];  [1];  [3]; ORCiD logo [3]; ORCiD logo [4];  [5];  [5];  [1]; ORCiD logo [2];  [5];  [1];  [1];  [1];  [1]
  1. Univ. of California, Berkeley, CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States); Kavli Inst. for Particle Astrophysics and Cosmology, Menlo Park, CA (United States)
  3. Univ. of Colorado, Denver, CO (United States)
  4. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, IL (United States)
  5. Texas A & M Univ., College Station, TX (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); National Science Foundation (NSF); Michael M. Garland
OSTI Identifier:
1647078
Alternate Identifier(s):
OSTI ID: 1647687
Report Number(s):
arXiv:2004.10257; FERMILAB-PUB-20-390-AE
Journal ID: ISSN 2158-3226; oai:inspirehep.net:1792177; TRN: US2202573
Grant/Contract Number:  
AC02-07CH11359; KA-2401032; SC0018981; SC0017859; AC02-76SF00515; PHY-1415388; PHY-1809769
Resource Type:
Accepted Manuscript
Journal Name:
AIP Advances
Additional Journal Information:
Journal Volume: 10; Journal Issue: 8; Journal ID: ISSN 2158-3226
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; Environmental noise; Detectors; Electronic noise; Superconducting films; Thermal fluctuations; Phonons; I-V characteristics; Sensors; Signal processing; Dark matter

Citation Formats

Fink, C. W., Watkins, S. L., Aramaki, T., Brink, P. L., Ganjam, S., Hines, B. A., Huber, M. E., Kurinsky, N. A., Mahapatra, R., Mirabolfathi, N., Page, W. A., Partridge, R., Platt, M., Pyle, M., Sadoulet, B., Serfass, B., and Zuber, S. Characterizing TES power noise for future single optical-phonon and infrared-photon detectors. United States: N. p., 2020. Web. doi:10.1063/5.0011130.
Fink, C. W., Watkins, S. L., Aramaki, T., Brink, P. L., Ganjam, S., Hines, B. A., Huber, M. E., Kurinsky, N. A., Mahapatra, R., Mirabolfathi, N., Page, W. A., Partridge, R., Platt, M., Pyle, M., Sadoulet, B., Serfass, B., & Zuber, S. Characterizing TES power noise for future single optical-phonon and infrared-photon detectors. United States. https://doi.org/10.1063/5.0011130
Fink, C. W., Watkins, S. L., Aramaki, T., Brink, P. L., Ganjam, S., Hines, B. A., Huber, M. E., Kurinsky, N. A., Mahapatra, R., Mirabolfathi, N., Page, W. A., Partridge, R., Platt, M., Pyle, M., Sadoulet, B., Serfass, B., and Zuber, S. Mon . "Characterizing TES power noise for future single optical-phonon and infrared-photon detectors". United States. https://doi.org/10.1063/5.0011130. https://www.osti.gov/servlets/purl/1647078.
@article{osti_1647078,
title = {Characterizing TES power noise for future single optical-phonon and infrared-photon detectors},
author = {Fink, C. W. and Watkins, S. L. and Aramaki, T. and Brink, P. L. and Ganjam, S. and Hines, B. A. and Huber, M. E. and Kurinsky, N. A. and Mahapatra, R. and Mirabolfathi, N. and Page, W. A. and Partridge, R. and Platt, M. and Pyle, M. and Sadoulet, B. and Serfass, B. and Zuber, S.},
abstractNote = {In this letter, we present the performance of a $100~\mu\mathrm{m}\times 400~\mu\mathrm{m} \times 40~\mathrm{nm}$ tungsten (W) Transition-Edge Sensor (TES) with a critical temperature of 40 mK. This device has a measured noise equivalent power (NEP) of $1.5\times 10^{-18}\ \mathrm{W}/\sqrt{\mathrm{Hz}}$, in a bandwidth of $2.6$ kHz, indicating a resolution for Dirac delta energy depositions of $40\pm 5~\mathrm{meV}$ (rms). The performance demonstrated by this device is a critical step towards developing a $\mathcal{O}(100)~\mathrm{meV}$ threshold athermal phonon detectors for low-mass dark matter searches.},
doi = {10.1063/5.0011130},
journal = {AIP Advances},
number = 8,
volume = 10,
place = {United States},
year = {Mon Aug 17 00:00:00 EDT 2020},
month = {Mon Aug 17 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Left: TES mask design. The W is shown in red, while the blue represents Al bias rails. The Al connects to the left and right sides of the TES. Middle: Thermal model for experimental setup. For simplicity, only two TESs are shown in the model. Right: Electrical circuit.more » Rsh is a shunt resistor which turns the current source (IBias) into a voltage bias. Any parasitic resistance on the shunt side of the bias circuit is absorbed into the value used for Rsh in this analysis. Rp is the parasitic resistance on the TES side of the bias circuit. L is the inductance in the TES line. RTES is the TES resistance, which takes on a value of R0 when in transition and takes on a value of RN when its temperature is above Tc.« less

Save / Share:

Works referenced in this record:

A quasiparticle‐trap‐assisted transition‐edge sensor for phonon‐mediated particle detection
journal, November 1995

  • Irwin, K. D.; Nam, S. W.; Cabrera, B.
  • Review of Scientific Instruments, Vol. 66, Issue 11
  • DOI: 10.1063/1.1146105

Influence of Temperature Gradients on Tunnel Junction Thermometry below 1 K: Cooling and Electron–Phonon Coupling
journal, December 2006

  • Karvonen, J. T.; Taskinen, L. J.; Maasilta, I. J.
  • Journal of Low Temperature Physics, Vol. 146, Issue 1-2
  • DOI: 10.1007/s10909-006-9264-y

Thermal fluctuation noise in Mo/Au superconducting transition-edge sensor microcalorimeters
journal, April 2019

  • Wakeham, N. A.; Adams, J. S.; Bandler, S. R.
  • Journal of Applied Physics, Vol. 125, Issue 16
  • DOI: 10.1063/1.5086045

Single electron–hole pair sensitive silicon detector with surface event discrimination
journal, May 2020

  • Hong, Ziqing; Ren, Runze; Kurinsky, Noah
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 963
  • DOI: 10.1016/j.nima.2020.163757

Ultra-low noise TES bolometer arrays for SAFARI instrument on SPICA
conference, July 2016

  • Khosropanah, P.; Suzuki, T.; Ridder, M. L.
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.2233472

Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination
journal, July 2003

  • Miller, Aaron J.; Nam, Sae Woo; Martinis, John M.
  • Applied Physics Letters, Vol. 83, Issue 4
  • DOI: 10.1063/1.1596723

Detection of light dark matter with optical phonons in polar materials
journal, October 2018


Transition-Edge Sensors
book, July 2005


Recent Probes of Standard and Non-standard Neutrino Physics With Nuclei
journal, November 2019

  • Papoulias, Dimitrios K.; Kosmas, Theocharis S.; Kuno, Yoshitaka
  • Frontiers in Physics, Vol. 7
  • DOI: 10.3389/fphy.2019.00191

Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer
journal, July 2012

  • Karasik, Boris S.; Pereverzev, Sergey V.; Soibel, Alexander
  • Applied Physics Letters, Vol. 101, Issue 5
  • DOI: 10.1063/1.4739839

Ultra-low-noise MoCu transition edge sensors for space applications
journal, April 2011

  • Goldie, D. J.; Velichko, A. V.; Glowacka, D. M.
  • Journal of Applied Physics, Vol. 109, Issue 8
  • DOI: 10.1063/1.3561432

High intrinsic energy resolution photon number resolving detectors
journal, July 2013

  • Lolli, L.; Taralli, E.; Portesi, C.
  • Applied Physics Letters, Vol. 103, Issue 4
  • DOI: 10.1063/1.4815922

First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector
journal, August 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.