DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Selective, High-Temperature O2 Adsorption in Chemically Reduced, Redox-Active Iron-Pyrazolate Metal–Organic Frameworks

Abstract

Developing O2-selective adsorbents that can produce high-purity oxygen from air remains a significant challenge. Here, we show that chemically reduced metal–organic framework materials of the type AxFe2(bdp)3 (A = Na+, K+; bdp2- = 1,4-benzenedipyrazolate; 0 < x ≤ 2), which feature coordinatively saturated iron centers, are capable of strong and selective adsorption of O2 over N2 at ambient (25 °C) or even elevated (200 °C) temperature. A combination of gas adsorption analysis, single-crystal X-ray diffraction, magnetic susceptibility measurements, and a range of spectroscopic methods, including 23Na solid-state NMR, Mössbauer, and X-ray photoelectron spectroscopies, are employed as probes of O2 uptake. Significantly, the results support a selective adsorption mechanism involving outer-sphere electron transfer from the framework to form superoxide species, which are subsequently stabilized by intercalated alkali metal cations that reside in the one-dimensional triangular pores of the structure. We further demonstrate similar O2 uptake behavior to that of AxFe2(bdp)3 in an expanded-pore framework analogue and thereby gain additional insight into the O2 adsorption mechanism. The chemical reduction of a robust metal–organic framework to render it capable of binding O2 through such an outer-sphere electron transfer mechanism represents a promising and underexplored strategy for the design of next-generation O2 adsorbents.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]
  1. Univ. of California, Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1644174
Alternate Identifier(s):
OSTI ID: 1644171; OSTI ID: 1644172
Grant/Contract Number:  
SC0019992; AC02-05CH11231; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 142; Journal Issue: 34; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; Metal–organic frameworks; air separation; gas adsorption; redox activity; oxygen purification; crystallography

Citation Formats

Jaffe, Adam, Ziebel, Michael E., Halat, David M., Biggins, Naomi, Murphy, Ryan A., Chakarawet, Khetpakorn, Reimer, Jeffrey A., and Long, Jeffrey R. Selective, High-Temperature O2 Adsorption in Chemically Reduced, Redox-Active Iron-Pyrazolate Metal–Organic Frameworks. United States: N. p., 2020. Web. doi:10.1021/jacs.0c06570.
Jaffe, Adam, Ziebel, Michael E., Halat, David M., Biggins, Naomi, Murphy, Ryan A., Chakarawet, Khetpakorn, Reimer, Jeffrey A., & Long, Jeffrey R. Selective, High-Temperature O2 Adsorption in Chemically Reduced, Redox-Active Iron-Pyrazolate Metal–Organic Frameworks. United States. https://doi.org/10.1021/jacs.0c06570
Jaffe, Adam, Ziebel, Michael E., Halat, David M., Biggins, Naomi, Murphy, Ryan A., Chakarawet, Khetpakorn, Reimer, Jeffrey A., and Long, Jeffrey R. Wed . "Selective, High-Temperature O2 Adsorption in Chemically Reduced, Redox-Active Iron-Pyrazolate Metal–Organic Frameworks". United States. https://doi.org/10.1021/jacs.0c06570. https://www.osti.gov/servlets/purl/1644174.
@article{osti_1644174,
title = {Selective, High-Temperature O2 Adsorption in Chemically Reduced, Redox-Active Iron-Pyrazolate Metal–Organic Frameworks},
author = {Jaffe, Adam and Ziebel, Michael E. and Halat, David M. and Biggins, Naomi and Murphy, Ryan A. and Chakarawet, Khetpakorn and Reimer, Jeffrey A. and Long, Jeffrey R.},
abstractNote = {Developing O2-selective adsorbents that can produce high-purity oxygen from air remains a significant challenge. Here, we show that chemically reduced metal–organic framework materials of the type AxFe2(bdp)3 (A = Na+, K+; bdp2- = 1,4-benzenedipyrazolate; 0 < x ≤ 2), which feature coordinatively saturated iron centers, are capable of strong and selective adsorption of O2 over N2 at ambient (25 °C) or even elevated (200 °C) temperature. A combination of gas adsorption analysis, single-crystal X-ray diffraction, magnetic susceptibility measurements, and a range of spectroscopic methods, including 23Na solid-state NMR, Mössbauer, and X-ray photoelectron spectroscopies, are employed as probes of O2 uptake. Significantly, the results support a selective adsorption mechanism involving outer-sphere electron transfer from the framework to form superoxide species, which are subsequently stabilized by intercalated alkali metal cations that reside in the one-dimensional triangular pores of the structure. We further demonstrate similar O2 uptake behavior to that of AxFe2(bdp)3 in an expanded-pore framework analogue and thereby gain additional insight into the O2 adsorption mechanism. The chemical reduction of a robust metal–organic framework to render it capable of binding O2 through such an outer-sphere electron transfer mechanism represents a promising and underexplored strategy for the design of next-generation O2 adsorbents.},
doi = {10.1021/jacs.0c06570},
journal = {Journal of the American Chemical Society},
number = 34,
volume = 142,
place = {United States},
year = {Wed Jul 29 00:00:00 EDT 2020},
month = {Wed Jul 29 00:00:00 EDT 2020}
}

Works referenced in this record:

A review of air separation technologies and their integration with energy conversion processes
journal, May 2001


Porous solids for air separation
journal, February 1996


Equilibrium Adsorption Isotherms of Pure N 2 and O 2 and Their Binary Mixtures on LiLSX Zeolite: Experimental Data and Thermodynamic Analysis
journal, April 2014

  • Wu, Chin-Wen; Kothare, Mayuresh V.; Sircar, Shivaji
  • Industrial & Engineering Chemistry Research, Vol. 53, Issue 17
  • DOI: 10.1021/ie500268s

Pre-combustion CO2 capture
journal, September 2015

  • Jansen, Daniel; Gazzani, Matteo; Manzolini, Giampaolo
  • International Journal of Greenhouse Gas Control, Vol. 40
  • DOI: 10.1016/j.ijggc.2015.05.028

Selective gas adsorption and separation in metal–organic frameworks
journal, January 2009

  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

Thermodynamics of oxygen binding in natural and synthetic dioxygen complexes
journal, April 1984

  • Niederhoffer, Eric C.; Timmons, James H.; Martell, Arthur E.
  • Chemical Reviews, Vol. 84, Issue 2
  • DOI: 10.1021/cr00060a003

Synthetic oxygen carriers related to biological systems
journal, April 1979

  • Jones, Robert D.; Summerville, David A.; Basolo, Fred.
  • Chemical Reviews, Vol. 79, Issue 2
  • DOI: 10.1021/cr60318a002

Separation of Oxygen from Air Using Coordination Complexes: A Review
journal, April 1994

  • Li, Guang Qing; Govind, Rakesh
  • Industrial & Engineering Chemistry Research, Vol. 33, Issue 4
  • DOI: 10.1021/ie00028a001

Reversible and Selective O 2 Chemisorption in a Porous Metal–Organic Host Material
journal, July 2011

  • Southon, Peter D.; Price, David J.; Nielsen, Pia K.
  • Journal of the American Chemical Society, Vol. 133, Issue 28
  • DOI: 10.1021/ja202228v

Metal–Organic Frameworks for Separations
journal, September 2011

  • Li, Jian-Rong; Sculley, Julian; Zhou, Hong-Cai
  • Chemical Reviews, Vol. 112, Issue 2, p. 869-932
  • DOI: 10.1021/cr200190s

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Hydrocarbon Separations in Metal–Organic Frameworks
journal, September 2013

  • Herm, Zoey R.; Bloch, Eric D.; Long, Jeffrey R.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm402897c

Flexible metal–organic frameworks
journal, January 2014

  • Schneemann, A.; Bon, V.; Schwedler, I.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00101J

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

A supermolecular building approach for the design and construction of metal–organic frameworks
journal, January 2014

  • Guillerm, Vincent; Kim, Dongwook; Eubank, Jarrod F.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00135D

Chemical, thermal and mechanical stabilities of metal–organic frameworks
journal, February 2016


Some suggested perspectives for multifunctional hybrid porous solids
journal, January 2009


Ion Conductivity and Transport by Porous Coordination Polymers and Metal–Organic Frameworks
journal, June 2013

  • Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu
  • Accounts of Chemical Research, Vol. 46, Issue 11
  • DOI: 10.1021/ar300291s

Highly-Selective and Reversible O2 Binding in Cr3(1,3,5-benzenetricarboxylate)2
journal, June 2010

  • Murray, Leslie J.; Dinca, Mircea; Yano, Junko
  • Journal of the American Chemical Society, Vol. 132, Issue 23, p. 7856-7857
  • DOI: 10.1021/ja1027925

Hydrogen Storage and Selective, Reversible O 2 Adsorption in a Metal-Organic Framework with Open Chromium(II) Sites
journal, June 2016

  • Bloch, Eric D.; Queen, Wendy L.; Hudson, Matthew R.
  • Angewandte Chemie International Edition, Vol. 55, Issue 30
  • DOI: 10.1002/anie.201602950

Selective Binding of O 2 over N 2 in a Redox–Active Metal–Organic Framework with Open Iron(II) Coordination Sites
journal, September 2011

  • Bloch, Eric D.; Murray, Leslie J.; Queen, Wendy L.
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja205976v

Selective, Tunable O 2 Binding in Cobalt(II)–Triazolate/Pyrazolate Metal–Organic Frameworks
journal, May 2016

  • Xiao, Dianne J.; Gonzalez, Miguel I.; Darago, Lucy E.
  • Journal of the American Chemical Society, Vol. 138, Issue 22
  • DOI: 10.1021/jacs.6b03680

Biomimetic O 2 adsorption in an iron metal–organic framework for air separation
journal, January 2020

  • Reed, Douglas A.; Xiao, Dianne J.; Jiang, Henry Z. H.
  • Chemical Science, Vol. 11, Issue 6
  • DOI: 10.1039/C9SC06047B

A structurally-characterized peroxomanganese( iv ) porphyrin from reversible O 2 binding within a metal–organic framework
journal, January 2018

  • Gallagher, Audrey T.; Lee, Jung Yoon; Kathiresan, Venkatesan
  • Chemical Science, Vol. 9, Issue 6
  • DOI: 10.1039/C7SC03739B

Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O 2 Binding: Design Rules and Ambient Temperature O 2 Chemisorption in a Cobalt–Triazolate Framework
journal, February 2020

  • Rosen, Andrew S.; Mian, M. Rasel; Islamoglu, Timur
  • Journal of the American Chemical Society, Vol. 142, Issue 9
  • DOI: 10.1021/jacs.9b12401

Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework
journal, June 2020


Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels
journal, May 2013


Electron delocalization and charge mobility as a function of reduction in a metal–organic framework
journal, June 2018


Tunable Mixed-Valence Doping toward Record Electrical Conductivity in a Three-Dimensional Metal–Organic Framework
journal, May 2018

  • Xie, Lilia S.; Sun, Lei; Wan, Ruomeng
  • Journal of the American Chemical Society, Vol. 140, Issue 24
  • DOI: 10.1021/jacs.8b03604

How super is superoxide?
journal, December 1981

  • Sawyer, Donald T.; Valentine, Joan S.
  • Accounts of Chemical Research, Vol. 14, Issue 12
  • DOI: 10.1021/ar00072a005

Superoxide Ion: Generation and Chemical Implications
journal, February 2016


Thermodynamics of mixed-gas adsorption
journal, January 1965


Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory
journal, August 2015

  • Walton, Krista S.; Sholl, David S.
  • AIChE Journal, Vol. 61, Issue 9
  • DOI: 10.1002/aic.14878

Crystallographic characterization of the metal–organic framework Fe 2 (bdp) 3 upon reductive cation insertion
journal, January 2020

  • Biggins, Naomi; Ziebel, Michael E.; Gonzalez, Miguel I.
  • Chemical Science, Vol. 11, Issue 34
  • DOI: 10.1039/D0SC03383A

Systematic XPS studies of metal oxides, hydroxides and peroxides
journal, January 2000

  • Dupin, Jean-Charles; Gonbeau, Danielle; Vinatier, Philippe
  • Physical Chemistry Chemical Physics, Vol. 2, Issue 6
  • DOI: 10.1039/a908800h

The use and misuse of curve fitting in the analysis of core X‐ray photoelectron spectroscopic data
journal, March 2019

  • Sherwood, Peter M. A.
  • Surface and Interface Analysis, Vol. 51, Issue 6
  • DOI: 10.1002/sia.6629

A comparison of weak molecular adsorption of organic molecules on clean copper and platinum surfaces
journal, May 1984


Li–O 2 Battery Degradation by Lithium Peroxide (Li 2 O 2 ): A Model Study
journal, December 2012

  • Younesi, Reza; Hahlin, Maria; Björefors, Fredrik
  • Chemistry of Materials, Vol. 25, Issue 1
  • DOI: 10.1021/cm303226g

Adsorption of some substituted ethylene molecules on Pt(111) at 95 K Part 1: NEXAFS, XPS and UPS studies
journal, April 1996


XPS and XAS study of oxygen coadsorbed with a dispersed phase of K on graphite
journal, August 2001


XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction
journal, August 2018


X-ray photoelectron spectroscopic study of Si(111) oxidation promoted by potassium multilayers under low O2 pressures
journal, May 1995

  • Lamontagne, B.; Semond, F.; Roy, D.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 73, Issue 1
  • DOI: 10.1016/0368-2048(94)02287-9

Paramagnetic NMR in solution and the solid state
journal, April 2019

  • Pell, Andrew J.; Pintacuda, Guido; Grey, Clare P.
  • Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 111
  • DOI: 10.1016/j.pnmrs.2018.05.001

Combining density functional theory and 23Na NMR to characterize Na2FePO4F as a potential sodium ion battery cathode
journal, November 2019

  • Smiley, Danielle L.; Carlier, Dany; Goward, Gillian R.
  • Solid State Nuclear Magnetic Resonance, Vol. 103
  • DOI: 10.1016/j.ssnmr.2019.07.001

Alkali Metal Oxides, Peroxides, and Superoxides:  A Multinuclear MAS NMR Study
journal, November 1998

  • Krawietz, Thomas R.; Murray, David K.; Haw, James F.
  • The Journal of Physical Chemistry A, Vol. 102, Issue 45
  • DOI: 10.1021/jp9823190

Nuclear Spin-Echo Fourier-Transform Mapping Spectroscopy for Broad NMR Lines in Solids
journal, March 1996


Density Functional Theory-Based Bond Pathway Decompositions of Hyperfine Shifts: Equipping Solid-State NMR to Characterize Atomic Environments in Paramagnetic Materials
journal, April 2013

  • Middlemiss, Derek S.; Ilott, Andrew J.; Clément, Raphaële J.
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm400201t

Mixed X-Site Formate-Hypophosphite Hybrid Perovskites
journal, July 2018

  • Wu, Yue; Halat, David M.; Wei, Fengxia
  • Chemistry - A European Journal, Vol. 24, Issue 44
  • DOI: 10.1002/chem.201803061

When long bis(pyrazolates) meet late transition metals: structure, stability and adsorption of metal–organic frameworks featuring large parallel channels
journal, January 2014

  • Galli, S.; Maspero, A.; Giacobbe, C.
  • Journal of Materials Chemistry A, Vol. 2, Issue 31
  • DOI: 10.1039/C4TA01798F

Highly Hydrophobic Isoreticular Porous Metal-Organic Frameworks for the Capture of Harmful Volatile Organic Compounds
journal, June 2013

  • Padial, Natalia M.; Quartapelle Procopio, Elsa; Montoro, Carmen
  • Angewandte Chemie International Edition, Vol. 52, Issue 32
  • DOI: 10.1002/anie.201303484

Trapping and spectroscopic characterization of an FeIII-superoxo intermediate from a nonheme mononuclear iron-containing enzyme
journal, September 2010

  • Mbughuni, M. M.; Chakrabarti, M.; Hayden, J. A.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 39
  • DOI: 10.1073/pnas.1010015107