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Non-linear photovoltaic degradation rates:
modeling and comparison against conventional
methods
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Joshua S. Stein

Abstract—Although common practice for estimating photovoltaic
(PV) degradation rate (Rp) assumes a linear behavior, field data
have shown that degradation rates are frequently non-linear. This
study presents a new methodology to detect and calculate non-
linear Rp based on PV performance time-series from nine different
systems over an 8-year period. Prior to performing the analysis
and in order to adjust model parameters to reflect actual PV
operation, synthetic datasets were utilized for -calibration
purposes. A change-point analysis is then applied to detect changes
in the slopes of PV trends, which are extracted from constructed
performance ratio (PR) time-series. Once the number and location
of change-points is found, the ordinary least squares (OLS)
method is applied to the different segments to compute the
corresponding rates. The obtained results verified that the
extracted trends from the PR time-series may not always be linear
and therefore, “non-conventional” models need to be applied. As
expected, all thin-film technologies demonstrated non-linear
behavior whereas non-linearity detected in the crystalline silicon
systems is thought to be due to a maintenance event. A
comparative analysis between the new methodology and other
conventional methods demonstrated levelized cost of energy
(LCOE) differences of up to 6.14%, highlighting the importance of
considering non-linear degradation behavior.

Index  Terms—non-linear  degradation, photovoltaics,
modelling, change-point analysis, levelized cost of energy
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Fig. 1. Theoretical comparison of different degradation rates and the impact
on LCOE (assuming discount rate 4%, operation &maintenance of 2%,
installation costs of 3 $/W, annual irradiation of 1700 kWh/kWp). This figure
was recreated from Stein ez al. [1].

I. INTRODUCTION

CCURATELY predicting the lifetime performance of

photovoltaic (PV) systems is critical for determining the

financial payback of the project. One of the parameters
that influence PV performance prediction is the Degradation
Rate (Rp) or Performance Loss Rate (PLR) defined as the
decrease of system efficiency over time. Knowledge of this
metric is important for reducing uncertainties and financial
risks [2].

Although seemingly simple, the Rp estimation is not trivial
for systems under real operating conditions due to several
factors (i.e. data quality, integrity, processing, methodologies,
etc.) that can influence its calculation [3]. Recently published
investigations aim to reduce computational inconsistencies
among analysts [4, 5] that use different data pipelines and
degradation rate estimation methods that have been extensively
analyzed elsewhere [6, 7]. Furthermore, common practices
assume a constant Rp over time when applying various
statistical techniques on PV performance time-series.

Field experience has shown that constant Rp is unrealistic
mainly due to the initial and wear-out degradation that may
occur. Known degradation modes such as Light and elevated



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

TABLEI
PV TECHNOLOGIES AND SIZES OF INVESTIGATED SYSTEMS
No. Manufacturer Model Technology Nseries X NparavLeL Size (kWp)
1 Atersa A-170M24V mono-c-Si 6x1 1.020
2 Sanyo HIP-205NHE1 mono-c-Si (HIT cell) Sx1 1.025
3 Suntechnics STM 200 FW mono-c-Si (back-contact cell) S5x1 1.000
4 Schott Solar ASE-165-GT-FT/MC multi-c-Si (MAIN cell) 6x1 1.020
5 Schott Solar ASE-260-DG-FT multi-c-Si (EFG) 4x1 1.000
6 SolarWorld SW165 poly multi-c-Si 6x1 0.990
7 MHI MA100T2 a-Si (single cell) 2x5 1.000
8 First Solar FS60 CdTe 3x6 1.080
9 Wirth Solar WS 11007/75 CIGS 6x2 0.900

Temperature Induced Degradation (LeTID) [8], Light Induced
Degradation (LID) [9] and Staebler—Wronski [10] effects occur
early in the life of a PV module and then cease once an
equilibrium has been reached. The path traveled to a certain
performance loss has a significant economic impact on the
levelized cost of energy (LCOE). Fig 1 shows an example of
three possible degradation pathways resulting in the same total
loss but with different LCOE values. A sensitivity analysis
based on Monte Carlo simulation and theoretical degradation
rate curves was conducted by Jordan ef al. [11, 12] where an
LCOE difference of ~1.1 ¢/kWh was found, establishing the Rp
as the third most important factor influencing the LCOE, after
the discount rate and capital cost [12].

Non-linear drops in performance may affect contractual
agreements between operation and maintenance (O&M)
contractors and PV asset managers where key performance
indicators (KPIs) are agreed to in order to quantitatively
monitor the health state and performance of a particular power
plant. Such LCOE differences and significant uncertainties in
PV performance models highlight the importance of developing
more sophisticated non-linear degradation rate models in order
to reduce financial risks.

A new methodology is proposed for estimating non-linear Rp
based on a decomposition model coupled to a change-point
analysis. This is achieved by detecting and quantifying changes
in the variability of performance ratio (PR) time-series, which,
in turn, results in defining different segments of the extracted
trend. Each segment is then analyzed to compute the
corresponding degradation rates which are then compared
against conventional methods using LCOE as a criterion.

II. METHODOLOGY

A. Outdoor Test Facility (OTF)

Operational data from nine grid-connected PV systems of
approximately 1 kWp capacity each were used for this
investigation. Modules included mono-crystalline silicon
(mono-c-Si), multi-crystalline Si (multi-c-Si) and thin-film
technologies (see Table I). The systems were installed and
commissioned in June 2006, in a hot semi-arid climate (K6ppen

climate classification: BSh), in Nicosia, Cyprus. Identical
inverters connected all systems to the grid to avoid mismatches
in tracking the maximum power point (MPP).

The performance of each PV system and the prevailing
meteorological conditions were recorded according to the IEC
61724 [13], at a resolution of one second and stored as 1- and
15-minute averages of irradiance, meteorological and electrical
measurements. The meteorological data include in-plane
irradiance from a broadband pyranometer, ambient
temperature, wind speed and direction, while the PV
operational data include the MPP DC current, voltage and
power (P,4) of the array, AC power to the utility grid and back-
of-module temperature. The systems are ground-mount, fixed-
tilt at an inclination angle of 27.5° facing due South, at the OTF
of the University of Cyprus (UCY) in Nicosia, Cyprus.

The recording period used for this investigation was 8 years
(i.e. 2006 — 2014), which was considered acceptable since
several complete annual cycles allow spectral [14] and
temperature variability to average out in order to be able to
provide Rp estimations with relatively low uncertainty [15, 16].

All PV arrays and sensors were kept clean to minimize any
soiling effects. Furthermore, all sensors were inspected and
calibrated periodically to minimize systematic errors (e.g. due
to sensor drifts). Finally, it should be noted that the degradation
rates obtained in this study may not be indicative of different
climates and PV technologies.

B. Data Quality Processing and Verification

Data quality routines (DQRs) were applied to the 15-min
average datasets to ensure data validity and filter out erroneous
measurements.

The DQRs process includes: initial data statistics,
identification of monitoring availability, outliers, missing,
duplicate, and erroneous data. In order to avoid bias
introduction, a maximum threshold of 5% of missing data was
set. Once the power datasets were normalized to each repective
systems’ rated power, an outlier filter was applied to remove
PR values outside 2 standard deviations using the Sigma Rule
method. Further filtering is applied to include irradiance values



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

between 50 W/m? and 1300 W/m? and P, within 10% and 130%
of power under standard test conditions (Psrc). The process did
not include the imputation of data to estimate missing values
and temperature or spectral corrections were not applied to the
data. The time-series were then resampled and aggregated to
construct a dataset of monthly DC PR values where the Rp
modelling was performed. Daily aggregation was not preferred
due to larger fluctuations. AC PR was not chosen as it would
represent PV system degradation which is not the objective of
this analysis.

C. Modeling Rp Using Conventional Statistical Methods

Conventional statistical methods assume a constant rate of
power decrease over time and the relative degradation rate is
calculated by multiplying the ratio of the slope to intercept by
12 or 365 for monthly or daily aggregation, respectively.

In this study, five different methods were used for the
comparative analysis. Four of these are freely available on the
PV Performance Modeling Collaborative (PVPMC) website
[17]: a) linear regression with ordinary least squares (OLS), b)
classical seasonal decomposition (CSD), ¢) seasonal and trend
decomposition using locally weighted scatterplot smoothing,
LOWESS, (STL) and d) Holt-Winters (HW) triple-exponential
smoothing. In addition to these, the e) year-on-year (YOY)
comparative approach that is available through the Python
Library “RdTools” [18] is also used. The theory, merits and
demerits of each method have been reported elsewhere [6, 7,
19]. Each of the five methods was applied to the OTF datasets
to serve as a baseline for comparison. The same data
normalization, filtering, and aggregation was used for all
methods in order to enable a comparative analysis.

D. Modeling Non-Linear Rp Using Facebook Prophet

Facebook Prophet (FBP) Algorithm was selected to model
the PR trends and subsequent change-points for estimating non-
linear Rp in this work [20]. FBP is an open-source library,
available in Python and R, used to forecast time-series based on
an additive (i.e. when the seasonal variation is relatively
constant over time) decomposition model where trend,
seasonality and holidays are combined as follows:

y() = g(t) + s(®) + h(t) + e )

where g(t) is the trend, s(t) and h(t) represent the seasonal
and holiday (not used in this study) components respectively,
and e; accounts for the error. The trend model is using a
piecewise linear model by default whereas the seasonal model
is similar to the exponential smoothing in the conventional HW
technique. This model performs well with long time-series that
have high seasonality and it is robust to outliers and missing
data [20]. The main reason for selecting the FBP model is its
ability to perform change-point analysis [21] on the time-series

trend either automatically or by modifying a number of
parameters.

The resulting trends of the monthly PR time-series were
analyzed using the change-point technique, embedded in FBP,
which identifies the amount and location of change-points by
capturing statistical changes in the slopes of defined segments.
By default, the FBP algorithm distributes 25 “potential”
change-points uniformly along the selected range of the time-
series’ trend and then compares the slopes against a set
threshold level in order to decide whether there is a
“significant” change-point or not. In this study however, the
number of potential change-points, threshold level, and
flexibility were optimized to capture the PV behavior (see
Section II-E). Once the trend was sliced into different segments,
the ordinary least squares (OLS) method [22] was applied in
order to compute the different Rp values for each segment.

E. FBP Calibration Against Synthetic Datasets

Time-series decomposition is used to remove the seasonality
effect from a given dataset. This is achieved by separating trend,
seasonality and error. Change-point analysis is then applied on
the trend to detect changes in slope. However, change-point
detection depends highly on the flexibility of the extracted
trend, number of potential change-points, and range. Since the
real Rp, number and location(s) of change-points are unknown,
an iterative process was followed to calibrate FBP against
synthetic data that were generated with known combinations of
given degradation rates and change-point locations.

Specifically, 15 typical meteorological year (TMY) datasets
from different locations in New Mexico (NM), USA were
randomly sampled and used as consecutive inputs to a PV
performance model of silicon and thin-film module
technologies using the Sandia PV Array Performance Model
(SAPM) [23] from pvlib-python [24]. Non-linear degradation
rates were then applied to the performance predictions and a
parametric analysis was performed to optimize the FBP model
parameters.

The number of potential change-points were uniformly
distributed along the time-series and set equal to the number of
month-to-month transitions in the dataset (i.e. n_changepoints
= 95) and the flexibility was adjusted until changes in Rp of at
least 0.5%/year in the synthetic datasets were identified but not
overfit (changepoint_prior_scale = 0.07). Since the analysis
does not project trends into the future, the changepoint_range
argument was set to 1. With these parameter inputs, FBP was
able to detect the optimum number and location of the imposed
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Fig. 2. Change-point detection on synthetic datasets with different non-linear degradation rate combinations and change-point positions. The synthetic datasets
were simulated using the SAPM on PVLIB with 15 TMY datasets from around NM, USA.
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Fig. 3. Comparison of computed degradation rates for all systems using
different methods. All methods assume linear behavior and the error bars are
95% confidence intervals of the statistical uncertainty.

change-points in all examined cases, as seen in a representative
sample of the synthetic datasets in Fig. 2.

F. Financial Impact on LCOE

LCOE is defined as the lifetime costs divided by the lifetime
energy generation, typically expressed in currency/kWh.
Although it has been criticized in literature for not adequately
reflecting project economic feasibility [25], it is a useful and
simple metric for comparing costs and benefits between
different technologies.

While the financial impact of non-linear trends was
investigated by Jordan et al. [11, 12] using theoretical curves, a
comparison is presented here, based on observed non-linear
degradation rates. The simplified equation used to calculate the
LCOE is given by [26]:

LCOE =

Eloo Ce/(14n)" )
T (11— t t ( )
Yt=0Et'(1-Rp)*/(1+7)
where ¢ is time, C; includes the initial investment and costs
associated to O&M, E; is the lifetime energy multiplied by the
degradation rate, and r is the discount rate.

III. RESULTS AND DISCUSSION

A. Comparative Analysis Assuming Linear Rp

FBP was initially used to calculate Rp assuming linearity by
applying OLS on the whole trend of the decomposed time-
series. In Fig. 3, the estimated Rpusing FBP, OLS, CSD, STL,
HW and YOY are shown for all the systems under
investigation. The error bars are 95% confidence intervals of
the statistical uncertainty assuming a normal distribution.

The minimum and maximum absolute mean (among all
methods) linear degradation rates were observed in the
Suntechnics back-contact cell technology (0.74%/year) and
Wurth Solar CIGS system (2.62%/year), respectively.
Averaging the computed linear degradation rates of each
technology, resulted in -0.77%/year, -0.94%/year, -2.17%/year
for the mono-c-Si, multi-c-Si and thin-film systems,
respectively.

With respect to the applied methods, HW and YOY
demonstrated the largest deviations from the means. As
expected, the OLS and YOY methods exhibit the widest
confidence intervals overall, whereas the remaining statistical
models result in relative degradation rates of lower statistical
uncertainty mainly due to their removal of seasonality. YOY is
a comparative approach which requires finer aggregation (e.g.
weekly or daily) and temperature correction for best
performance. Furthermore, FBP and STL seem to be the most
consistent, robust (i.e. lowest deviation from the mean) and
have the lowest uncertainty compared with the other statistical
techniques, a result that agrees with findings from other
investigations [7].

B. Non-Linear Rp Estimations Using FBP

The application of FBP to the monthly PR time-series of the
nine systems without assuming linearity revealed different
trend behaviors with some systems exhibiting different slopes
for each segment, verifying the presence of non-linear power
loss. More specifically, Fig. 4 shows the 8-year PR time-series
(black dots), FBP fit (blue line), trend (red line), uncertainty
(blue shade) and change-points (red dashed vertical lines) for
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Fig. 4. Linear and non-linear PR trend (red solid lines) segments with actual PR time-series (black dots), Prophet fit (blue line) and associated uncertainty (shaded
blue) and change-points (red dashed vertical lines) for systems 1-9 from Table I.

each system. The Sanyo, Suntechnics (mono-c-Si) and MHI,
First Solar, Wurth (thin-film) systems exhibited two segments
whereas the remaining mono-c-Si (Atersa) and multi-c-Si
(Schott MAIN, Schott EFG, SolarWorld) systems demonstrated
a linear power decline.

The analysis revealed that three out of five change-points
(Sanyo, Suntechnics, First Solar) occurred in 2009 which raises
the question whether this change-point is due to a maintenance
event or an actual degradation mechanism. Information
extracted from the maintenance logs of the UCY OTF indicated
an issue in the Sanyo and Suntechnics systems during March
and June of 2009. The issue was repaired, but correlation of the
maintenance to the degradation rate has not been established.
Therefore, it can be assumed that the change-points in the trends
of Sanyo and Suntechnics systems were due to a maintenance
event, verifying the ability of FBP to detect change-points in
PV PR time-series. Differentiation of failures from degradation
modes will be part of a future investigation. With respect to the
First Solar system, maintenance logs did not report any major

activities and therefore, the change-point can be attributed to a
change in degradation rate. Overall, |4Rp| of 0.90%/year,
0.46%/year, 0.30%/year, 0.81%/year and 0.14%/year were
observed for the Sanyo, Suntechnics, MHI, First Solar and
Wourth systems, respectively. Furthermore, Wurth Solar was the
only system that exhibited increased degradation rate,
compared to the initial value.

Table II summarizes the 8-year annual degradation rate
results of all methods and systems assuming linear and non-
linear trends. Due to the difficulty of a fair “apples-to-apples”
comparison between linear and non-linear degradation rates,
the difference will be highlighted using the LCOF as a criterion.

C. Impact on LCOE

As mentioned by Jordan et al. [11] and shown in (2), the
degradation rate directly affects the LCOE (see also the
theoretical curves in Fig. 1). Assuming that the change in the
rate of performance degradation occurs once (e.g. -1.35%/year
for the first 3 years and -0.45%/year for the remaining, in the
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TABLE II
SUMMARY OF COMPUTED NON-LINEAR Rp (%/YEAR) WITH CORRESPONDING 95% CONFIDENCE INTERVALS USING DIFFERENT STATISTICAL METHODS.
Non-linear Rp Assuming linear Rp
System FPB Rp,: FPB Rp,: FPB OLS CSD STL HW Yoy
Atersa NA NA -0.83+0.01 -0.65+0.52 -1.06+0.09 -0.81+0.13 -0.96+0.14 -0.52+0.55
Sanyo -1.35+0.01 -0.45+0.01 -0.75+0.04 -0.67+0.38 -0.68+0.09 -0.78+0.08 -0.89+0.10 -0.83+0.46
Suntechnics -1.07+0.00 -0.61+0.00 -0.74+0.02 -0.58+0.47 -0.67+0.07 -0.76+0.06 -0.88+0.07 -0.78+0.50
Schott MAIN NA NA -0.96+0.00 -0.84+0.43 -1.06+0.05 -0.97+0.05 -1.10+0.06 -0.69+0.45
Schott EFG NA NA -0.80+0.00 -0.67+£0.41 -0.89+0.06 -0.80+0.06 -0.87+0.06 -0.33+0.45
SolarWorld NA NA -1.23+0.00 -1.07+0.49 -1.26+0.06 -1.23+0.05 -1.30+0.04 -0.92+0.49
MHI -1.78+0.01 -1.48+0.00 -1.61+0.02 -1.68+0.24 -1.59+0.09 -1.62+0.09 -1.79+0.13 -1.19+0.46
First Solar -2.80+0.00 -1.99+0.04 -2.31+0.05 -2.26+0.23 -2.34+0.07 -2.31+0.09 -2.67£0.11 -1.95+0.38
Wiirth -2.52+0.00 -2.66+0.01 -2.57+0.01 -2.48+0.32 -2.59+0.08 -2.58+0.07 -2.98+0.09 -2.51+0.48
; — ' -0.5%/year to -0.9%/year for the c-Si modules [11]. The results
E oS showed that the LCOE for the Sanyo system differed between
5 : g—;f 0.19% to 4.26%. The LCOE for the Suntechnics system varied
$ Hw between 1.33% and 2.80%. These results indicate a significant
=41 ¢ Yo difference in estimating LCOE that could impact financial
e calculations.
g 3 xb ' 4 .xp ' This LCOE analysis highlights the potential importance of
2 g [ not assuming constant rates of power loss during a project’s
] - lifetime. Using more sophisticated models (different methods,
1 x> .»xl- metrics, assumptions, distributions instead of single values,
Ne P S etc.) may more accurately reflect PV power plant project
Sanyo Suntechnics MHI First Solar Wurth economics.
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Fig. 5. Impact of non-linear degradation rate on LCOE. Non-linear FBP method
is compared against all statistical methods that assume linear behavior
(including the linear version of FBP).

case of Sanyo system), a comparative analysis based on linear
and non-linear degradation rates was conducted in order to
highlight the impact on LCOE over a 25-year project lifetime.
Input parameters to (2) are the same as in Fig. 1.

The results of this analysis are illustrated in Fig. 5 for all
methods. It should be noted that the linear version of FBP (i.e.
by ignoring the change-point analysis and simply applying OLS
on the extracted trend) is also compared with the non-linear
case. LCOE percentage differences (ALCOE) of up to 6.14%
have been found in the case of the HW method on the First Solar
system. Furthermore, and as expected (see Section II1-A), HW
is the method with the greatest impact, but this is due to the poor
performance in estimating the degradation rates. The least
impacted system was the one from Suntechnics with an average
of 1.28% whereas the First Solar and Sanyo systems
demonstrated the highest mean differences of 2.97% and
2.92%, respectively. MHI and Wurth follow with 1.85% and
1.34%, respectively. If HW is excluded from the analysis, all
methods exhibit differences lower than 3.6% whereas the
method with the lowest difference in the mean was the CSD.

An additional analysis was performed to compare LCOE
calculated using the non-linear Rp values to LCOE calculated
assuming degradation rate ranges reported in literature; i.e.

IV.CONCLUSIONS

This study successfully detected and quantified the impact of
non-linear PV degradation on LCOE by applying the FBP
change-point algorithm on trends of monthly PR time-series.
This is important since identifying change-points in the PV
performance trend may mitigate the bias in the Rp computations
when applying statistical analysis techniques that assume
linearity. Interestingly, all thin-film PV technologies
demonstrated a change in the slope of their corresponding
trends. Future research focused on degradation change-points
of thin-film modules may reveal the underlying causes that
enable more accurate performance predictions.

The application of OLS on the different trends’ segments
enabled the quantification of Rp at different PV lifetime phases.
A comparative analysis between FBP and conventional models
demonstrated the robustness of the STL and FBP methods. In
order to highlight the impact of non-linear degradation rates, an
LCOE analysis was performed exhibiting differences up to
6.14%.

The analysis showed that, two out of six c-Si PV systems
exhibited a coincident change-point in 2009. The changes
suggest that the systems experienced similar issues at the
beginning of life that were rectified at a similar point in time.
This example indicates the potential for verifying successful
maintenance procedures for avoiding significant degradation
rates. In addition, the approach can be used to identify system
failures or soiling patterns that may not be detectable using
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daily time-series data. Overall, the approach provides a more
detailed analysis of system performance that could support
more accurate financial models. In the future, this methodology
will be applied to larger scale PV power plants to enable
stronger verification and benchmarking.
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