DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates

Abstract

Ozonolysis of isoprene, one of the most abundant volatile organic compounds emitted into the Earth’s atmosphere, generates two four-carbon unsaturated Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). The extended conjugation between the vinyl substituent and carbonyl oxide groups of these Criegee intermediates facilitates rapid electrocyclic ring closures that form 5-membered cyclic peroxides, known as dioxoles. This research discusses the first experimental evidence of this novel decay pathway, which is predicted to be the dominant atmospheric sink for specific conformational forms of MVK-oxide (anti) and MACR-oxide (syn) with the vinyl substituent adjacent to the terminal O atom. The resulting dioxoles are predicted to undergo rapid unimolecular decay to oxygenated hydrocarbon radical products, including acetyl, vinoxy, formyl, and 2-methyl-vinoxy radicals. In the presence of O2, these radicals rapidly react to form peroxy radicals (ROO), which quickly decay via carbon-centered radical intermediates (QOOH) to stable carbonyl products that are identified in this work. The carbonyl products are detected under thermal conditions (298 K, 10 torr He) using multiplexed photoionization mass spectrometry (MPIMS). The main products (and associated relative abundances) originating from unimolecular decay of anti-MVK-oxide and subsequent reaction with O2 are formaldehyde (88 ± 5%), ketene (9 ± 1%)more » and glyoxal (3 ± 1%). Those identified from the unimolecular decay of syn-MACR-oxide and subsequent reaction of O2 are acetaldehyde (37 ± 7%), vinyl alcohol (9 ± 1%), methylketene (2 ± 1%), and acrolein (52 ± 5%). In addition to the stable carbonyl products, the secondary peroxy chemistry also generates OH or HO2 radical co-products.« less

Authors:
 [1];  [2];  [3]; ORCiD logo [3];  [4];  [1]; ORCiD logo [1]; ORCiD logo [5];  [3]; ORCiD logo [6];  [6]; ORCiD logo [4]; ORCiD logo [1]
  1. Univ. of Pennsylvania, Philadelphia, PA (United States)
  2. California Institute of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab. (JPL); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
  3. California Institute of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab. (JPL)
  4. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  5. Sandia National Lab. (SNL-CA), Livermore, CA (United States
  6. Bristol Univ. (United Kingdom)
Publication Date:
Research Org.:
Univ. of Pennsylvania, Philadelphia, PA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division; USDOE National Nuclear Security Administration (NNSA); National Aeronautics and Space Administration (NASA); National Science Foundation (NSF)
OSTI Identifier:
1633329
Alternate Identifier(s):
OSTI ID: 1644072; OSTI ID: 1660372; OSTI ID: 1782236
Report Number(s):
SAND-2020-7131J
Journal ID: ISSN 1089-5639
Grant/Contract Number:  
FG02-87ER13792; NA0003525; AC02-06CH11357; AC02-05CH11231; CHE-1902509; AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 124; Journal Issue: 18; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; Chemical reactions; Photoionization; Energy; Aldehydes; Organic reactions

Citation Formats

Vansco, Michael F., Caravan, Rebecca L., Zuraski, Kristen, Winiberg, Frank A. F., Au, Kendrew, Trongsiriwat, Nisalak, Walsh, Patrick J., Osborn, David L., Percival, Carl J., Khan, M. Anwar H., Shallcross, Dudley E., Taatjes, Craig A., and Lester, Marsha I. Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates. United States: N. p., 2020. Web. doi:10.1021/acs.jpca.0c02138.
Vansco, Michael F., Caravan, Rebecca L., Zuraski, Kristen, Winiberg, Frank A. F., Au, Kendrew, Trongsiriwat, Nisalak, Walsh, Patrick J., Osborn, David L., Percival, Carl J., Khan, M. Anwar H., Shallcross, Dudley E., Taatjes, Craig A., & Lester, Marsha I. Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates. United States. https://doi.org/10.1021/acs.jpca.0c02138
Vansco, Michael F., Caravan, Rebecca L., Zuraski, Kristen, Winiberg, Frank A. F., Au, Kendrew, Trongsiriwat, Nisalak, Walsh, Patrick J., Osborn, David L., Percival, Carl J., Khan, M. Anwar H., Shallcross, Dudley E., Taatjes, Craig A., and Lester, Marsha I. Tue . "Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates". United States. https://doi.org/10.1021/acs.jpca.0c02138. https://www.osti.gov/servlets/purl/1633329.
@article{osti_1633329,
title = {Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates},
author = {Vansco, Michael F. and Caravan, Rebecca L. and Zuraski, Kristen and Winiberg, Frank A. F. and Au, Kendrew and Trongsiriwat, Nisalak and Walsh, Patrick J. and Osborn, David L. and Percival, Carl J. and Khan, M. Anwar H. and Shallcross, Dudley E. and Taatjes, Craig A. and Lester, Marsha I.},
abstractNote = {Ozonolysis of isoprene, one of the most abundant volatile organic compounds emitted into the Earth’s atmosphere, generates two four-carbon unsaturated Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). The extended conjugation between the vinyl substituent and carbonyl oxide groups of these Criegee intermediates facilitates rapid electrocyclic ring closures that form 5-membered cyclic peroxides, known as dioxoles. This research discusses the first experimental evidence of this novel decay pathway, which is predicted to be the dominant atmospheric sink for specific conformational forms of MVK-oxide (anti) and MACR-oxide (syn) with the vinyl substituent adjacent to the terminal O atom. The resulting dioxoles are predicted to undergo rapid unimolecular decay to oxygenated hydrocarbon radical products, including acetyl, vinoxy, formyl, and 2-methyl-vinoxy radicals. In the presence of O2, these radicals rapidly react to form peroxy radicals (ROO), which quickly decay via carbon-centered radical intermediates (QOOH) to stable carbonyl products that are identified in this work. The carbonyl products are detected under thermal conditions (298 K, 10 torr He) using multiplexed photoionization mass spectrometry (MPIMS). The main products (and associated relative abundances) originating from unimolecular decay of anti-MVK-oxide and subsequent reaction with O2 are formaldehyde (88 ± 5%), ketene (9 ± 1%) and glyoxal (3 ± 1%). Those identified from the unimolecular decay of syn-MACR-oxide and subsequent reaction of O2 are acetaldehyde (37 ± 7%), vinyl alcohol (9 ± 1%), methylketene (2 ± 1%), and acrolein (52 ± 5%). In addition to the stable carbonyl products, the secondary peroxy chemistry also generates OH or HO2 radical co-products.},
doi = {10.1021/acs.jpca.0c02138},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 18,
volume = 124,
place = {United States},
year = {Tue Apr 07 00:00:00 EDT 2020},
month = {Tue Apr 07 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years
journal, January 2014

  • Sindelarova, K.; Granier, C.; Bouarar, I.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 17
  • DOI: 10.5194/acp-14-9317-2014

Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene
journal, January 2016

  • Nguyen, Tran B.; Tyndall, Geoffrey S.; Crounse, John D.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 15
  • DOI: 10.1039/C6CP00053C

Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes
journal, March 2018


Free radical modelling studies during the UK TORCH Campaign in Summer 2003
journal, January 2007

  • Emmerson, K. M.; Carslaw, N.; Carslaw, D. C.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 1
  • DOI: 10.5194/acp-7-167-2007

Night-time radical chemistry during the TORCH campaign
journal, June 2009


Criegee intermediates and their impacts on the troposphere
journal, January 2018

  • Khan, M. A. H.; Percival, C. J.; Caravan, R. L.
  • Environmental Science: Processes & Impacts, Vol. 20, Issue 3
  • DOI: 10.1039/C7EM00585G

Electronic spectroscopy of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis
journal, December 2018

  • Vansco, Michael F.; Marchetti, Barbara; Lester, Marsha I.
  • The Journal of Chemical Physics, Vol. 149, Issue 24
  • DOI: 10.1063/1.5064716

Synthesis, Electronic Spectroscopy, and Photochemistry of Methacrolein Oxide: A Four-Carbon Unsaturated Criegee Intermediate from Isoprene Ozonolysis
journal, August 2019

  • Vansco, Michael F.; Marchetti, Barbara; Trongsiriwat, Nisalak
  • Journal of the American Chemical Society, Vol. 141, Issue 38
  • DOI: 10.1021/jacs.9b05193

Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of CH2I with O2
journal, January 2012


Ultraviolet Spectrum and Photochemistry of the Simplest Criegee Intermediate CH 2 OO
journal, December 2012

  • Beames, Joseph M.; Liu, Fang; Lu, Lu
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja310603j

Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH3CHOO
journal, April 2013


UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH 3 CHOO
journal, June 2013

  • Beames, Joseph M.; Liu, Fang; Lu, Lu
  • The Journal of Chemical Physics, Vol. 138, Issue 24
  • DOI: 10.1063/1.4810865

UV Spectroscopic Characterization of Dimethyl- and Ethyl-Substituted Carbonyl Oxides
journal, March 2014

  • Liu, Fang; Beames, Joseph M.; Green, Amy M.
  • The Journal of Physical Chemistry A, Vol. 118, Issue 12
  • DOI: 10.1021/jp412726z

Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production
journal, July 2018

  • Barber, Victoria P.; Pandit, Shubhrangshu; Green, Amy M.
  • Journal of the American Chemical Society, Vol. 140, Issue 34
  • DOI: 10.1021/jacs.8b06010

Unimolecular decay strongly limits the atmospheric impact of Criegee intermediates
journal, January 2017

  • Vereecken, L.; Novelli, A.; Taraborrelli, D.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 47
  • DOI: 10.1039/C7CP05541B

Quantum Chemical and Master Equation Studies of the Methyl Vinyl Carbonyl Oxides Formed in Isoprene Ozonolysis
journal, December 2005

  • Kuwata, Keith T.; Valin, Lukas C.; Converse, Amber D.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 47
  • DOI: 10.1021/jp054346d

Quantum chemical and RRKM/master equation studies of isoprene ozonolysis: Methacrolein and methacrolein oxide
journal, January 2008


Mechanism of OH formation from ozonolysis of isoprene: kinetics and product yields
journal, May 2002


Unimolecular decay dynamics of Criegee intermediates: Energy-resolved rates, thermal rates, and their atmospheric impact
journal, December 2019


Impact of the water dimer on the atmospheric reactivity of carbonyl oxides
journal, January 2016

  • Anglada, Josep M.; Solé, Albert
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 26
  • DOI: 10.1039/C6CP02531E

Rate Coefficients of C1 and C2 Criegee Intermediate Reactions with Formic and Acetic Acid Near the Collision Limit: Direct Kinetics Measurements and Atmospheric Implications
journal, March 2014

  • Welz, Oliver; Eskola, Arkke J.; Sheps, Leonid
  • Angewandte Chemie International Edition, Vol. 53, Issue 18
  • DOI: 10.1002/anie.201400964

A kinetic study of the CH 2 OO Criegee intermediate self-reaction, reaction with SO 2 and unimolecular reaction using cavity ring-down spectroscopy
journal, January 2015

  • Chhantyal-Pun, Rabi; Davey, Anthony; Shallcross, Dudley E.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 5
  • DOI: 10.1039/C4CP04198D

The reaction of Criegee intermediates with NO, RO2, and SO2, and their fate in the atmosphere
journal, January 2012

  • Vereecken, L.; Harder, H.; Novelli, A.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 42
  • DOI: 10.1039/c2cp42300f

The reaction of Criegee intermediates with acids and enols
journal, January 2017

  • Vereecken, L.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 42
  • DOI: 10.1039/C7CP05132H

Ab initio study on the mechanism of the HCO+O2→HO2+CO reaction
journal, March 2003

  • Martı́nez-Ávila, Mónica; Peiró-Garcı́a, Julio; Ramı́rez-Ramı́rez, Vı́ctor M.
  • Chemical Physics Letters, Vol. 370, Issue 3-4
  • DOI: 10.1016/S0009-2614(03)00106-4

Experimental and Modeling Studies of the Pressure and Temperature Dependences of the Kinetics and the OH Yields in the Acetyl + O 2 Reaction
journal, February 2011

  • Carr, Scott A.; Glowacki, David R.; Liang, Chi-Hsiu
  • The Journal of Physical Chemistry A, Vol. 115, Issue 6
  • DOI: 10.1021/jp1099199

High-level theoretical characterization of the vinoxy radical ( CH 2 CHO) + O 2 reaction
journal, May 2018

  • Weidman, Jared D.; Allen, Ryan T.; Moore, Kevin B.
  • The Journal of Chemical Physics, Vol. 148, Issue 18
  • DOI: 10.1063/1.5026295

Characterization of the 2-methylvinoxy radical + O 2 reaction: A focal point analysis and composite multireference study
journal, September 2019

  • Davis, Matthew M.; Weidman, Jared D.; Abbott, Adam S.
  • The Journal of Chemical Physics, Vol. 151, Issue 12
  • DOI: 10.1063/1.5113800

Temperature Dependence of the Rate Constant for the Reaction HCO + O 2 → HO 2 + CO at T = 200−398 K
journal, April 1999

  • Nesbitt, Fred L.; Gleason, James F.; Stief, Louis J.
  • The Journal of Physical Chemistry A, Vol. 103, Issue 16
  • DOI: 10.1021/jp984781q

Cavity Ring-Down Spectroscopy and Relative Rate Study of Reactions of HCO Radicals with O 2 , NO, NO 2 , and Cl 2 at 295 K
journal, August 2000

  • Ninomiya, Yuki; Goto, Masashi; Hashimoto, Satoshi
  • The Journal of Physical Chemistry A, Vol. 104, Issue 32
  • DOI: 10.1021/jp001188b

Rate constants for the reaction of hydroxyl radicals with acetaldehyde from 244–528 K
journal, August 1985

  • Michael, J. V.; Keil, D. G.; Klemm, R. B.
  • The Journal of Chemical Physics, Vol. 83, Issue 4
  • DOI: 10.1063/1.449400

Pressure dependence of the rate coefficients and product yields for the reaction of CH3CO radicals with O2
journal, January 1997


OH formation from CH3CO+O2: a convenient experimental marker for the acetyl radical
journal, November 2002


Mechanistic and kinetic study of the CH3CO+O2 reaction
journal, June 2005

  • Hou, Hua; Li, Aixiao; Hu, Hongyi
  • The Journal of Chemical Physics, Vol. 122, Issue 22
  • DOI: 10.1063/1.1897375

About the co-product of the OH radical in the reaction of acetyl with O2 below atmospheric pressure
journal, January 2006


Kinetics and mechanism of the reactions of CH3CO and CH3C(O)CH2 radicals with O2. Low-pressure discharge flow experiments and quantum chemical computations
journal, January 2007

  • Kovács, Gergely; Zádor, Judit; Farkas, Edit
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 31
  • DOI: 10.1039/b706216h

OH yields from the CH3CO+O2 reaction using an internal standard
journal, September 2007


Master equation simulations of competing unimolecular and bimolecular reactions: application to OH production in the reaction of acetyl radical with O2
journal, January 2007

  • Maranzana, Andrea; Barker, John R.; Tonachini, Glauco
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 31
  • DOI: 10.1039/b705116f

Transient infrared absorption of t-CH3C(O)OO, c-CH3C(O)OO, and α-lactone recorded in gaseous reactions of CH3CO and O2
journal, March 2010

  • Chen, Sun-Yang; Lee, Yuan-Pern
  • The Journal of Chemical Physics, Vol. 132, Issue 11
  • DOI: 10.1063/1.3352315

Laser‐induced fluorescence of the C 2 H 3 O radical
journal, January 1981

  • Inoue, Gen; Akimoto, Hajime
  • The Journal of Chemical Physics, Vol. 74, Issue 1
  • DOI: 10.1063/1.440848

Electronic structure of vinoxy radical CH 2 CHO
journal, January 1982

  • Dupuis, M.; Wendoloski, J. J.; Lester, W. A.
  • The Journal of Chemical Physics, Vol. 76, Issue 1
  • DOI: 10.1063/1.442749

Kinetic Study on Reactions of 1- and 2-Methylvinoxy Radicals with O 2
journal, January 2001

  • Oguchi, Tatsuo; Miyoshi, Akira; Koshi, Mitsuo
  • The Journal of Physical Chemistry A, Vol. 105, Issue 2
  • DOI: 10.1021/jp001826q

Rate Coefficients and Equilibrium Constant for the CH 2 CHO + O 2 Reaction System
journal, March 2006

  • Delbos, Eric; Fittschen, Christa; Hippler, Horst
  • The Journal of Physical Chemistry A, Vol. 110, Issue 9
  • DOI: 10.1021/jp054697s

Kinetics and Products of the Reaction of the Vinoxy Radical with O2
journal, October 1995

  • Zhu, Lei; Johnston, Grace
  • The Journal of Physical Chemistry, Vol. 99, Issue 41
  • DOI: 10.1021/j100041a030

The multiplexed chemical kinetic photoionization mass spectrometer: A new approach to isomer-resolved chemical kinetics
journal, October 2008

  • Osborn, David L.; Zou, Peng; Johnsen, Howard
  • Review of Scientific Instruments, Vol. 79, Issue 10
  • DOI: 10.1063/1.3000004

Direct Observation of the Gas-Phase Criegee Intermediate (CH 2 OO)
journal, September 2008

  • Taatjes, Craig A.; Meloni, Giovanni; Selby, Talitha M.
  • Journal of the American Chemical Society, Vol. 130, Issue 36
  • DOI: 10.1021/ja804165q

VUV Photoionization Cross Sections of HO 2 , H 2 O 2 , and H 2 CO
journal, February 2015

  • Dodson, Leah G.; Shen, Linhan; Savee, John D.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 8
  • DOI: 10.1021/jp508942a

High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics of H 2 CO + and D 2 CO +
journal, March 1993

  • Niu, Baohua; Shirley, David A.; Bai, Ying
  • The Journal of Chemical Physics, Vol. 98, Issue 6
  • DOI: 10.1063/1.464999

Formation of dimethylketene and methacrolein by reaction of the CH radical with acetone
journal, January 2013

  • Goulay, Fabien; Derakhshan, Adeeb; Maher, Eamonn
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 11
  • DOI: 10.1039/c3cp43829e

Low-temperature combustion chemistry of biofuels: pathways in the initial low-temperature (550 K–750 K) oxidation chemistry of isopentanol
journal, January 2012

  • Welz, Oliver; Zádor, Judit; Savee, John D.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 9
  • DOI: 10.1039/c2cp23248k

Heat of formation for acetyl cation in the gas phase
journal, October 1982

  • Traeger, John C.; McLoughlin, Russell G.; Nicholson, A. J. C.
  • Journal of the American Chemical Society, Vol. 104, Issue 20
  • DOI: 10.1021/ja00384a010

Near-threshold H/D exchange in CD3CHO photodissociation
journal, May 2011

  • Heazlewood, Brianna R.; Maccarone, Alan T.; Andrews, Duncan U.
  • Nature Chemistry, Vol. 3, Issue 6
  • DOI: 10.1038/nchem.1052

Penning Ionization of HCHO, CH2CH2, and CH2CHCHO by Collision with He(23S) Metastable Atoms
journal, September 1995

  • Ohno, Koichi; Okamura, Kohji; Yamakado, Hideo
  • The Journal of Physical Chemistry, Vol. 99, Issue 39
  • DOI: 10.1021/j100039a010

Advances and challenges in laminar flame experiments and implications for combustion chemistry
journal, August 2014


Criegee Intermediate Reactions with Carboxylic Acids: A Potential Source of Secondary Organic Aerosol in the Atmosphere
journal, June 2018


Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere
journal, May 2008


Reducing secondary organic aerosol formation from gasoline vehicle exhaust
journal, June 2017

  • Zhao, Yunliang; Saleh, Rawad; Saliba, Georges
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 27
  • DOI: 10.1073/pnas.1620911114

Unimolecular Reactions of Peroxy Radicals in Atmospheric Chemistry and Combustion
journal, September 2010


Atmospheric chemistry of VOCs and NOx
journal, January 2000


Quantum Chemical and Master Equation Simulations of the Oxidation and Isomerization of Vinoxy Radicals
journal, March 2005

  • Kuwata, Keith T.; Hasson, Alam S.; Dickinson, Ray V.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 11
  • DOI: 10.1021/jp047299i

MESMER: An Open-Source Master Equation Solver for Multi-Energy Well Reactions
journal, September 2012

  • Glowacki, David R.; Liang, Chi-Hsiu; Morley, Christopher
  • The Journal of Physical Chemistry A, Vol. 116, Issue 38
  • DOI: 10.1021/jp3051033

Atmospheric photooxidation of isoprene part II: The ozone-isoprene reaction
journal, January 1992

  • Paulson, Suzanne E.; Flagan, Richard C.; Seinfeld, John H.
  • International Journal of Chemical Kinetics, Vol. 24, Issue 1
  • DOI: 10.1002/kin.550240110

Formation of OH radicals in the gas phase reactions of O 3 with a series of terpenes
journal, January 1992

  • Atkinson, Roger; Aschmann, Sara M.; Arey, Janet
  • Journal of Geophysical Research, Vol. 97, Issue D5
  • DOI: 10.1029/92JD00062

Atmospheric chemistry of isoprene and of its carbonyl products
journal, May 1993

  • Grosjean, Daniel; Williams, Edwin L.; Grosjean, Eric
  • Environmental Science & Technology, Vol. 27, Issue 5
  • DOI: 10.1021/es00042a004

Formation of OH Radicals in the Gas-Phase Reaction of Propene, Isobutene, and Isoprene with O 3 :  Yields and Mechanistic Implications
journal, November 1999

  • Neeb, Peter; Moortgat, Geert K.
  • The Journal of Physical Chemistry A, Vol. 103, Issue 45
  • DOI: 10.1021/jp9903458

Measurements of OH and HO2 yields from the gas phase ozonolysis of isoprene
journal, January 2010

  • Malkin, T. L.; Goddard, A.; Heard, D. E.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 3
  • DOI: 10.5194/acp-10-1441-2010

Kinetic and Theoretical Investigation of the Gas-Phase Ozonolysis of Isoprene:  Carbonyl Oxides as an Important Source for OH Radicals in the Atmosphere
journal, August 1997

  • Gutbrod, Roland; Kraka, Elfi; Schindler, Ralph N.
  • Journal of the American Chemical Society, Vol. 119, Issue 31
  • DOI: 10.1021/ja970050c

On the use of CO as scavenger for OH radicals in the ozonolysis of simple alkenes and isoprene
journal, January 1997


Measurement of OH radical formation from the reaction of ozone with several biogenic alkenes
journal, October 1998

  • Paulson, Suzanne E.; Chung, Myeong; Sen, Atish D.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D19
  • DOI: 10.1029/98JD01951

OH Yields in the Gas-Phase Reactions of Ozone with Alkenes
journal, September 1999

  • Rickard, Andrew R.; Johnson, David; McGill, Charlotte D.
  • The Journal of Physical Chemistry A, Vol. 103, Issue 38
  • DOI: 10.1021/jp9916992

Direct observation of OH production from the ozonolysis of olefins
journal, January 1998

  • Donahue, Neil M.; Kroll, Jesse H.; Anderson, James G.
  • Geophysical Research Letters, Vol. 25, Issue 1
  • DOI: 10.1029/97GL53560

Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species
journal, January 2006

  • Atkinson, R.; Baulch, D. L.; Cox, R. A.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 11
  • DOI: 10.5194/acp-6-3625-2006

Evaluated Kinetic Data for Combustion Modelling
journal, May 1992

  • Baulch, D. L.; Cobos, C. J.; Cox, R. A.
  • Journal of Physical and Chemical Reference Data, Vol. 21, Issue 3
  • DOI: 10.1063/1.555908

Works referencing / citing this record: