DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonreciprocal directional dichroism of a chiral magnet in the visible range

Abstract

Nonreciprocal directional dichroism is an unusual light–matter interaction that gives rise to diode-like behavior in low-symmetry materials. The chiral varieties are particularly scarce due to the requirements for strong spin–orbit coupling, broken time-reversal symmetry, and a chiral axis. Here we bring together magneto-optical spectroscopy and first-principles calculations to reveal high-energy, broadband nonreciprocal directional dichroism in Ni3TeO6 with special focus on behavior in the metamagnetic phase above 52 T. In addition to demonstrating this effect in the magnetochiral configuration, we explore the transverse magnetochiral orientation in which applied field and light propagation are orthogonal to the chiral axis and, by so doing, uncover an additional configuration with a unique nonreciprocal response in the visible part of the spectrum. In a significant conceptual advance, we use first-principles methods to analyze how the Ni2+ d-to-d on-site excitations develop magneto-electric character and present a microscopic model that unlocks the door to theory-driven discovery of chiral magnets with nonreciprocal properties.

Authors:
 [1]; ORCiD logo [2];  [1];  [3];  [4];  [1];  [5];  [4]; ORCiD logo [3];  [6]; ORCiD logo [3]; ORCiD logo [1]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Rutgers Univ., Piscataway, NJ (United States); Kangwon National Univ., Chuncheon (Korea, Republic of)
  3. Rutgers Univ., Piscataway, NJ (United States)
  4. Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab)
  5. Central Michigan Univ., Mount Pleasant, MI (United States)
  6. Rutgers Univ., Piscataway, NJ (United States); Pohang Univ. of Science and Technology (POSTECH) (Korea, Republic of)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE
OSTI Identifier:
1630856
Report Number(s):
LA-UR-19-28258
Journal ID: ISSN 2397-4648; TRN: US2200700
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
npj Quantum Materials
Additional Journal Information:
Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 2397-4648
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; High Magnetic Field Science

Citation Formats

Yokosuk, Michael O., Kim, Heung-Sik, Hughey, Kendall D., Kim, Jaewook, Stier, Andreas V., O’Neal, Kenneth R., Yang, Junjie, Crooker, Scott A., Haule, Kristjan, Cheong, Sang-Wook, Vanderbilt, David, and Musfeldt, Janice L. Nonreciprocal directional dichroism of a chiral magnet in the visible range. United States: N. p., 2020. Web. doi:10.1038/s41535-020-0224-6.
Yokosuk, Michael O., Kim, Heung-Sik, Hughey, Kendall D., Kim, Jaewook, Stier, Andreas V., O’Neal, Kenneth R., Yang, Junjie, Crooker, Scott A., Haule, Kristjan, Cheong, Sang-Wook, Vanderbilt, David, & Musfeldt, Janice L. Nonreciprocal directional dichroism of a chiral magnet in the visible range. United States. https://doi.org/10.1038/s41535-020-0224-6
Yokosuk, Michael O., Kim, Heung-Sik, Hughey, Kendall D., Kim, Jaewook, Stier, Andreas V., O’Neal, Kenneth R., Yang, Junjie, Crooker, Scott A., Haule, Kristjan, Cheong, Sang-Wook, Vanderbilt, David, and Musfeldt, Janice L. Fri . "Nonreciprocal directional dichroism of a chiral magnet in the visible range". United States. https://doi.org/10.1038/s41535-020-0224-6. https://www.osti.gov/servlets/purl/1630856.
@article{osti_1630856,
title = {Nonreciprocal directional dichroism of a chiral magnet in the visible range},
author = {Yokosuk, Michael O. and Kim, Heung-Sik and Hughey, Kendall D. and Kim, Jaewook and Stier, Andreas V. and O’Neal, Kenneth R. and Yang, Junjie and Crooker, Scott A. and Haule, Kristjan and Cheong, Sang-Wook and Vanderbilt, David and Musfeldt, Janice L.},
abstractNote = {Nonreciprocal directional dichroism is an unusual light–matter interaction that gives rise to diode-like behavior in low-symmetry materials. The chiral varieties are particularly scarce due to the requirements for strong spin–orbit coupling, broken time-reversal symmetry, and a chiral axis. Here we bring together magneto-optical spectroscopy and first-principles calculations to reveal high-energy, broadband nonreciprocal directional dichroism in Ni3TeO6 with special focus on behavior in the metamagnetic phase above 52 T. In addition to demonstrating this effect in the magnetochiral configuration, we explore the transverse magnetochiral orientation in which applied field and light propagation are orthogonal to the chiral axis and, by so doing, uncover an additional configuration with a unique nonreciprocal response in the visible part of the spectrum. In a significant conceptual advance, we use first-principles methods to analyze how the Ni2+ d-to-d on-site excitations develop magneto-electric character and present a microscopic model that unlocks the door to theory-driven discovery of chiral magnets with nonreciprocal properties.},
doi = {10.1038/s41535-020-0224-6},
journal = {npj Quantum Materials},
number = 1,
volume = 5,
place = {United States},
year = {Fri Apr 03 00:00:00 EDT 2020},
month = {Fri Apr 03 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Phase diagram, optical properties, and measurement geometries of Ni3TeO6. a Comprehensive H–T phase diagram for Hc. AFM, antiferromagnet; SF, spin flop, MM, metamagnetic. The phase diagram in the transverse configuration exhibits only gradual canting with increasing field. b Optical absorption spectrum of Ni3TeO6. The on-site Nimore » d-to-d excitations are labeled. c Schematic representation of magnetochiral dichroism. This measurement orientation requires a chiral axis in the material as well as light (±k) and magnetic field ±H aligned along the chiral direction in the Faraday geometry. The nonreciprocal effect will depend upon light propagation and field direction. The symmetry considerations are fully discussed in the Supplementary Information. d Image of the ab-plane sample under crossed linear polarizer and analyzer. The red circle indicates the position of the light spot, which is within a single chiral domain. e Optical rotation measurement using crossed polarizer and analyzer. The angle Θ corresponds to the angle between the analyzer and normal from the polarizer. The red symbols correspond to the lighter green portion of the crystal and the blue symbols correspond to the darker green portion in the corners. f The nonreciprocal effect also occurs in the transverse magnetochiral orientation. Here we maintain the Faraday geometry (with ±k and ±H) but the chiral (c) axis is in the plane of the polished crystal. The symmetry considerations of this unique geometry are discussed in the Supplementary Information. g Photographic image in which the c-axis is in the plane of the polished crystal under crossed linear polarizer and analyzer. The red circle indicates the measurement region, which is within a single chiral domain.« less

Save / Share:

Works referenced in this record:

Broken symmetries, non-reciprocity, and multiferroicity
journal, April 2018

  • Cheong, Sang-Wook; Talbayev, Diyar; Kiryukhin, Valery
  • npj Quantum Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41535-018-0092-5

Symmetry conditions for nonreciprocal light propagation in magnetic crystals
journal, January 2013


Structural predictions for Correlated Electron Materials Using the Functional Dynamical Mean Field Theory Approach
journal, April 2018


Maximally localized Wannier functions: Theory and applications
journal, October 2012

  • Marzari, Nicola; Mostofi, Arash A.; Yates, Jonathan R.
  • Reviews of Modern Physics, Vol. 84, Issue 4
  • DOI: 10.1103/RevModPhys.84.1419

Revisiting magnetic coupling in transition-metal-benzene complexes with maximally localized Wannier functions
journal, June 2009


Magneto-chiral dichroism of CsCuCl3
journal, September 2017


Observation of magneto-chiral dichroism
journal, December 1997

  • Rikken, G. L. J. A.; Raupach, E.
  • Nature, Vol. 390, Issue 6659
  • DOI: 10.1038/37323

One-way transparency of four-coloured spin-wave excitations in multiferroic materials
journal, February 2014

  • Kézsmárki, I.; Szaller, D.; Bordács, S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4203

Periodic rotation of magnetization in a non-centrosymmetric soft magnet induced by an electric field
journal, June 2009

  • Saito, M.; Ishikawa, K.; Konno, S.
  • Nature Materials, Vol. 8, Issue 8
  • DOI: 10.1038/nmat2492

Spin-wave directional anisotropies in antiferromagnetic Ba 3 NbFe 3 Si 2 O 14
journal, October 2019


Non-hysteretic colossal magnetoelectricity in a collinear antiferromagnet
journal, January 2014

  • Oh, Yoon Seok; Artyukhin, Sergey; Yang, Jun Jie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4201

Giant nonreciprocal emission of spin waves in Ta/Py bilayers
journal, July 2016

  • Kwon, Jae Hyun; Yoon, Jungbum; Deorani, Praveen
  • Science Advances, Vol. 2, Issue 7
  • DOI: 10.1126/sciadv.1501892

Chirality of matter shows up via spin excitations
journal, August 2012

  • Bordács, S.; Kézsmárki, I.; Szaller, D.
  • Nature Physics, Vol. 8, Issue 10
  • DOI: 10.1038/nphys2387

Magnetoelectric resonance with electromagnons in a perovskite helimagnet
journal, December 2011

  • Takahashi, Youtarou; Shimano, Ryo; Kaneko, Yoshio
  • Nature Physics, Vol. 8, Issue 2
  • DOI: 10.1038/nphys2161

Optical Magnetoelectric Effect in the PolarGaFeO3Ferrimagnet
journal, July 2004


High-Temperature Terahertz Optical Diode Effect without Magnetic Order in Polar FeZnMo 3 O 8
journal, January 2018


Eight Types of Symmetrically Distinct Vectorlike Physical Quantities
journal, October 2014


Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays
journal, December 2014

  • Sessoli, Roberta; Boulon, Marie-Emmanuelle; Caneschi, Andrea
  • Nature Physics, Vol. 11, Issue 1
  • DOI: 10.1038/nphys3152

Optical Diode Effect at Spin-Wave Excitations of the Room-Temperature Multiferroic BiFeO 3
journal, September 2015


Nonreciprocal responses from non-centrosymmetric quantum materials
journal, September 2018


Variationally optimized atomic orbitals for large-scale electronic structures
journal, April 2003


Strong magneto-chiral dichroism in enantiopure chiral ferromagnets
journal, August 2008

  • Train, Cyrille; Gheorghe, Ruxandra; Krstic, Vojislav
  • Nature Materials, Vol. 7, Issue 9
  • DOI: 10.1038/nmat2256

Superconductivity in a chiral nanotube
journal, February 2017


Unidirectional terahertz light absorption in the pyroelectric ferrimagnet CaBaCo 4 O 7
journal, December 2015


Observation of Magnetoelectric Directional Anisotropy
journal, September 2002


Ground State of the Electron Gas by a Stochastic Method
journal, August 1980


Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni 3 TeO 6
journal, September 2015


Gigantic Optical Magnetoelectric Effect in CuB 2 O 4
journal, January 2008

  • Saito, Mitsuru; Taniguchi, Kouji; Arima, Taka-hisa
  • Journal of the Physical Society of Japan, Vol. 77, Issue 1
  • DOI: 10.1143/JPSJ.77.013705

Ni 3 TeO 6 —a collinear antiferromagnet with ferromagnetic honeycomb planes
journal, January 2010


Theory of nonreciprocal optical effects in antiferromagnets: The case of Cr 2 O 3
journal, July 1996

  • Muthukumar, V. N.; Valentí, Roser; Gros, Claudius
  • Physical Review B, Vol. 54, Issue 1
  • DOI: 10.1103/PhysRevB.54.433

Linear optical properties of solids within the full-potential linearized augmented planewave method
journal, July 2006


One-Way Transparency of Light in Multiferroic CuB 2 O 4
journal, December 2015


Magnetic Control of Crystal Chirality and the Existence of a Large Magneto-Optical Dichroism Effect in CuB 2 O 4
journal, September 2008


Enhanced Directional Dichroism of Terahertz Light in Resonance with Magnetic Excitations of the Multiferroic Ba 2 CoGe 2 O 7 Oxide Compound
journal, February 2011


Phonon Magnetochiral Effect
journal, April 2019


First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO 3
journal, April 2016


SOS: symmetry-operational similarity
journal, October 2019


Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes
journal, December 2002

  • Krstić, V.; Roth, S.; Burghard, M.
  • The Journal of Chemical Physics, Vol. 117, Issue 24
  • DOI: 10.1063/1.1523895

The fruitful introduction of chirality and control of absolute configurations in molecular magnets
journal, January 2011

  • Train, Cyrille; Gruselle, Michel; Verdaguer, Michel
  • Chemical Society Reviews, Vol. 40, Issue 6
  • DOI: 10.1039/c1cs15012j

Chirality and magnetism shake hands
journal, September 2008


Interlocked chiral/polar domain walls and large optical rotation in Ni 3 TeO 6
journal, July 2015

  • Wang, Xueyun; Huang, Fei-Ting; Yang, Junjie
  • APL Materials, Vol. 3, Issue 7
  • DOI: 10.1063/1.4927232

Magnetoelectric Coupling through the Spin Flop Transition in Ni 3 TeO 6
journal, September 2016


Enhancement of nonlinear effects using photonic crystals
journal, April 2004

  • SoljaČiĆ, Marin; Joannopoulos, J. D.
  • Nature Materials, Vol. 3, Issue 4
  • DOI: 10.1038/nmat1097

Magnetically Controllable CuB 2 O 4 Phase Retarder
journal, November 2008

  • Saito, Mitsuru; Ishikawa, Kenta; Taniguchi, Kouji
  • Applied Physics Express, Vol. 1
  • DOI: 10.1143/APEX.1.121302

Nonreciprocal Directional Dichroism and Toroidalmagnons in Helical Magnets
journal, February 2012

  • Miyahara, Shin; Furukawa, Nobuo
  • Journal of the Physical Society of Japan, Vol. 81, Issue 2
  • DOI: 10.1143/JPSJ.81.023712

Solitary wave excitations of skyrmion strings in chiral magnets
journal, December 2020

  • Kravchuk, Volodymyr P.; Rößler, Ulrich K.; van den Brink, Jeroen
  • Physical Review B, Vol. 102, Issue 22
  • DOI: 10.1103/PhysRevB.102.220408

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.