DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad

Abstract

One group of enzymes that confer resistance to aminoglycoside antibiotics through covalent modification belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. We show how a unique GNAT subfamily member uses a previously unidentified noncanonical catalytic triad, consisting of a glutamic acid, a histidine, and the antibiotic substrate itself, which acts as a nucleophile and attacks the acetyl donor molecule. Neutron diffraction studies allow for unambiguous identification of a low-barrier hydrogen bond, predicted in canonical catalytic triads to increase basicity of the histidine. This work highlights the role of this unique catalytic triad in mediating antibiotic resistance while providing new insights into the design of the next generation of aminoglycosides.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]
  1. Univ. of Tennessee, Knoxville, TN (United States). Joint Inst. of Neutron Science. Graduate School of Genome Science and Technology
  2. Univ. of Tennessee, Knoxville, TN (United States). Joint Inst. of Neutron Science. Graduate School of Genome Science and Technology; National Science Foundation (NSF), Alexandria, VA (United States); Univ. of Tennessee, Knoxville, TN (United States). Dept. of Biochemistry and Cellular and Molecular Biology
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Sciences Directorate
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1625990
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 4; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; Science & Technology - Other Topics

Citation Formats

Kumar, Prashasti, Serpersu, Engin H., and Cuneo, Matthew J. A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad. United States: N. p., 2018. Web. doi:10.1126/sciadv.aas8667.
Kumar, Prashasti, Serpersu, Engin H., & Cuneo, Matthew J. A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad. United States. https://doi.org/10.1126/sciadv.aas8667
Kumar, Prashasti, Serpersu, Engin H., and Cuneo, Matthew J. Sun . "A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad". United States. https://doi.org/10.1126/sciadv.aas8667. https://www.osti.gov/servlets/purl/1625990.
@article{osti_1625990,
title = {A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad},
author = {Kumar, Prashasti and Serpersu, Engin H. and Cuneo, Matthew J.},
abstractNote = {One group of enzymes that confer resistance to aminoglycoside antibiotics through covalent modification belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. We show how a unique GNAT subfamily member uses a previously unidentified noncanonical catalytic triad, consisting of a glutamic acid, a histidine, and the antibiotic substrate itself, which acts as a nucleophile and attacks the acetyl donor molecule. Neutron diffraction studies allow for unambiguous identification of a low-barrier hydrogen bond, predicted in canonical catalytic triads to increase basicity of the histidine. This work highlights the role of this unique catalytic triad in mediating antibiotic resistance while providing new insights into the design of the next generation of aminoglycosides.},
doi = {10.1126/sciadv.aas8667},
journal = {Science Advances},
number = 4,
volume = 4,
place = {United States},
year = {Sun Apr 01 00:00:00 EDT 2018},
month = {Sun Apr 01 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Fig. 1 Fig. 1: Binary complexes of AAC-VIa. (A) Surface representation of AAC-VIa–sisomicin (green carbon atoms) binary complex superimposed on the enzyme–acetyl-CoA (yellow carbon atoms) binary complex. The AAC-VIa surface cavities that bind sisomicin and coenzyme A (CoASH) are colored black and gray, respectively, whereas the catalytic triad is shown inmagenta. (B)more » Close-up view of sisomicin (green carbon atoms) interaction with AAC-VIa. The site of antibiotic acetylation is circled in red. (C) Close-up view of acetyl-CoA (yellow carbon atoms) interaction with AAC-VIa. The acetyl donor is circled in red. Hydrogen bonds are represented as black dashed lines, and water molecules are shown as red spheres. The active-site residues have carbon atoms colored magenta. (D) Sisomicin with the site of acetylation (the N3 position of the unprimed ring) circled.« less

Save / Share:

Works referenced in this record:

Phaser.MRage: automated molecular replacement.
text, January 2013

  • Bunkóczi, Gábor; Echols, Nathaniel; McCoy, Airlie
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.52315

Mantid—Data analysis and visualization package for neutron scattering and μ SR experiments
journal, November 2014

  • Arnold, O.; Bilheux, J. C.; Borreguero, J. M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 764
  • DOI: 10.1016/j.nima.2014.07.029

Is Aspartate 52 Essential for Catalysis by Chicken Egg White Lysozyme? The Role of Natural Substrate-Assisted Hydrolysis
journal, January 1996

  • Matsumura, Ichiro; Kirsch, Jack F.
  • Biochemistry, Vol. 35, Issue 6
  • DOI: 10.1021/bi951671q

Trypsin specificity increased through substrate-assisted catalysis
journal, September 1995

  • Corey, D. R.; Willett, W. S.; Coombs, G. S.
  • Biochemistry, Vol. 34, Issue 36
  • DOI: 10.1021/bi00036a027

The Most Frequent Aminoglycoside Resistance Mechanisms--Changes with Time and Geographic Area: A Reflection of Aminoglycoside Usage Patterns?
journal, January 1997


Exploring the gas access routes in a [NiFeSe] hydrogenase using crystals pressurized with krypton and oxygen
journal, August 2020

  • Zacarias, Sónia; Temporão, Adriana; Carpentier, Philippe
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 25, Issue 6
  • DOI: 10.1007/s00775-020-01814-y

Towards automated crystallographic structure refinement with phenix.refine
journal, March 2012

  • Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 4
  • DOI: 10.1107/S0907444912001308

Metal ion-mediated substrate-assisted catalysis in type II restriction endonucleases
journal, November 1998

  • Horton, N. C.; Newberry, K. J.; Perona, J. J.
  • Proceedings of the National Academy of Sciences, Vol. 95, Issue 23
  • DOI: 10.1073/pnas.95.23.13489

Interaction of antibiotics with functional sites in 16S ribosomal RNA
journal, June 1987

  • Moazed, Danesh; Noller, Harry F.
  • Nature, Vol. 327, Issue 6121
  • DOI: 10.1038/327389a0

Inactivation of antibiotics and the dissemination of resistance genes
journal, April 1994


Thermodynamics of an aminoglycoside modifying enzyme with low substrate promiscuity: The aminoglycoside N3 acetyltransferase-VIa : Thermodynamic Basis of Ligand Promiscuity
journal, March 2017

  • Kumar, Prashasti; Serpersu, Engin H.
  • Proteins: Structure, Function, and Bioinformatics, Vol. 85, Issue 7
  • DOI: 10.1002/prot.25286

Irreversible Inhibitors of Serine, Cysteine, and Threonine Proteases
journal, February 2003

  • Powers, James C.; Asgian, Juliana L.; Ekici, Oezlem Dogan
  • ChemInform, Vol. 34, Issue 7
  • DOI: 10.1002/chin.200307259

Engineering enzyme specificity by "substrate-assisted catalysis"
journal, July 1987


Crystal structure of HIV-1 protease in situ product complex and observation of a low-barrier hydrogen bond between catalytic aspartates
journal, November 2006

  • Das, A.; Prashar, V.; Mahale, S.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 49
  • DOI: 10.1073/pnas.0605809103

LAUEGEN version 6.0 and INTLDM
journal, June 1998

  • Campbell, J. W.; Hao, Q.; Harding, M. M.
  • Journal of Applied Crystallography, Vol. 31, Issue 3
  • DOI: 10.1107/S0021889897016683

Crystal Structure of a GCN5-Related N-acetyltransferase
journal, August 1998


GCN5-Related N-Acetyltransferases: A Structural Overview
journal, June 2000

  • Dyda, Fred; Klein, David C.; Hickman, Alison Burgess
  • Annual Review of Biophysics and Biomolecular Structure, Vol. 29, Issue 1
  • DOI: 10.1146/annurev.biophys.29.1.81

PARP1 exhibits enhanced association and catalytic efficiency with γH2A.X-nucleosome
journal, December 2019


Substrate-assisted catalysis: Molecular basis and biological significance
journal, January 2000

  • Dall'Acqua, William; Carter, Paul
  • Protein Science, Vol. 9, Issue 1
  • DOI: 10.1110/ps.9.1.1

Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes.
journal, January 1993


An explanation for rapid enzyme-catalyzed proton abstraction from carbon acids: importance of late transition states in concerted mechanisms
journal, December 1993

  • Gerlt, John A.; Gassman, Paul G.
  • Journal of the American Chemical Society, Vol. 115, Issue 24
  • DOI: 10.1021/ja00077a062

Correction to Thermodynamics and Kinetics of Association of Antibiotics with the Aminoglycoside Acetyltransferase (3)-IIIb, a Resistance-Causing Enzyme
journal, October 2013

  • Norris, Adrianne L.; Özen, Can; Serpersu, Engin H.
  • Biochemistry, Vol. 52, Issue 43
  • DOI: 10.1021/bi401318e

MolProbity : all-atom structure validation for macromolecular crystallography
journal, December 2009

  • Chen, Vincent B.; Arendall, W. Bryan; Headd, Jeffrey J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042073

The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source
journal, July 2015

  • Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.
  • Journal of Applied Crystallography, Vol. 48, Issue 4
  • DOI: 10.1107/S1600576715011243

A New Concept for the Mechanism of Action of Chymotrypsin:  The Role of the Low-Barrier Hydrogen Bond
journal, April 1997

  • Cassidy, Constance S.; Lin, Jing; Frey, Perry A.
  • Biochemistry, Vol. 36, Issue 15
  • DOI: 10.1021/bi962013o

Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography
journal, March 2009

  • Adachi, M.; Ohhara, T.; Kurihara, K.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 12
  • DOI: 10.1073/pnas.0809400106

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Irreversible Inhibitors of Serine, Cysteine, and Threonine Proteases
journal, December 2002

  • Powers, James C.; Asgian, Juliana L.; Ekici, Özlem Doǧan
  • Chemical Reviews, Vol. 102, Issue 12
  • DOI: 10.1021/cr010182v

A low-barrier hydrogen bond in the catalytic triad of serine proteases
journal, June 1994


The Low Barrier Hydrogen Bond in Enzymatic Catalysis
journal, October 1998

  • Cleland, W. Wallace; Frey, Perry A.; Gerlt, John A.
  • Journal of Biological Chemistry, Vol. 273, Issue 40
  • DOI: 10.1074/jbc.273.40.25529

Interactions of Coenzyme A with the Aminoglycoside Acetyltransferase (3)-IIIb and Thermodynamics of a Ternary System
journal, May 2010

  • Norris, Adrianne L.; Serpersu, Engin H.
  • Biochemistry, Vol. 49, Issue 19
  • DOI: 10.1021/bi1001568

Why have mutagenesis studies not located the general base in ras p21
journal, July 1994

  • Schweins, T.; Langen, R.; Warshel, A.
  • Nature Structural & Molecular Biology, Vol. 1, Issue 7
  • DOI: 10.1038/nsb0794-476

Ligand promiscuity through the eyes of the aminoglycoside N 3 acetyltransferase IIa : Molecular Basis of Ligand Promiscuity
journal, June 2013

  • Norris, Adrianne L.; Serpersu, Engin H.
  • Protein Science, Vol. 22, Issue 7
  • DOI: 10.1002/pro.2273

Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis
journal, July 2011

  • Klimecka, Maria M.; Chruszcz, Maksymilian; Font, Jose
  • Journal of Molecular Biology, Vol. 410, Issue 3
  • DOI: 10.1016/j.jmb.2011.04.076

The Protein Data Bank
journal, January 2000


Thermodynamics and Kinetics of Association of Antibiotics with the Aminoglycoside Acetyltransferase (3)-IIIb, a Resistance-Causing Enzyme
journal, May 2010

  • Norris, Adrianne L.; Özen, Can; Serpersu, Engin H.
  • Biochemistry, Vol. 49, Issue 19
  • DOI: 10.1021/bi100155j

Combined High-Resolution Neutron and X-ray Analysis of Inhibited Elastase Confirms the Active-Site Oxyanion Hole but Rules against a Low-Barrier Hydrogen Bond
journal, August 2009

  • Tamada, Taro; Kinoshita, Takayoshi; Kurihara, Kazuo
  • Journal of the American Chemical Society, Vol. 131, Issue 31
  • DOI: 10.1021/ja9028846

Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes
journal, March 1993


The Protein Data Bank
journal, May 2002

  • Berman, Helen M.; Battistuz, Tammy; Bhat, T. N.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 58, Issue 6
  • DOI: 10.1107/s0907444902003451

Irreversible Inhibitors of Serine, Cysteine, and Threonine Proteases
journal, February 2003

  • Powers, James C.; Asgian, Juliana L.; Ekici, Oezlem Dogan
  • ChemInform, Vol. 34, Issue 7
  • DOI: 10.1002/chin.200307259

Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis
journal, July 2011

  • Klimecka, Maria M.; Chruszcz, Maksymilian; Font, Jose
  • Journal of Molecular Biology, Vol. 410, Issue 3
  • DOI: 10.1016/j.jmb.2011.04.076

Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold
journal, May 1999


Trypsin specificity increased through substrate-assisted catalysis
journal, September 1995

  • Corey, D. R.; Willett, W. S.; Coombs, G. S.
  • Biochemistry, Vol. 34, Issue 36
  • DOI: 10.1021/bi00036a027

Thermodynamics and Kinetics of Association of Antibiotics with the Aminoglycoside Acetyltransferase (3)-IIIb, a Resistance-Causing Enzyme
journal, May 2010

  • Norris, Adrianne L.; Özen, Can; Serpersu, Engin H.
  • Biochemistry, Vol. 49, Issue 19
  • DOI: 10.1021/bi100155j

Interactions of Coenzyme A with the Aminoglycoside Acetyltransferase (3)-IIIb and Thermodynamics of a Ternary System
journal, May 2010

  • Norris, Adrianne L.; Serpersu, Engin H.
  • Biochemistry, Vol. 49, Issue 19
  • DOI: 10.1021/bi1001568

Is Aspartate 52 Essential for Catalysis by Chicken Egg White Lysozyme? The Role of Natural Substrate-Assisted Hydrolysis
journal, January 1996

  • Matsumura, Ichiro; Kirsch, Jack F.
  • Biochemistry, Vol. 35, Issue 6
  • DOI: 10.1021/bi951671q

A New Concept for the Mechanism of Action of Chymotrypsin:  The Role of the Low-Barrier Hydrogen Bond
journal, April 1997

  • Cassidy, Constance S.; Lin, Jing; Frey, Perry A.
  • Biochemistry, Vol. 36, Issue 15
  • DOI: 10.1021/bi962013o

An explanation for rapid enzyme-catalyzed proton abstraction from carbon acids: importance of late transition states in concerted mechanisms
journal, December 1993

  • Gerlt, John A.; Gassman, Paul G.
  • Journal of the American Chemical Society, Vol. 115, Issue 24
  • DOI: 10.1021/ja00077a062

Interaction of antibiotics with functional sites in 16S ribosomal RNA
journal, June 1987

  • Moazed, Danesh; Noller, Harry F.
  • Nature, Vol. 327, Issue 6121
  • DOI: 10.1038/327389a0

Why have mutagenesis studies not located the general base in ras p21
journal, July 1994

  • Schweins, T.; Langen, R.; Warshel, A.
  • Nature Structural & Molecular Biology, Vol. 1, Issue 7
  • DOI: 10.1038/nsb0794-476

Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines
journal, August 2005

  • Sandy, James; Mushtaq, Adeel; Holton, Simon J.
  • Biochemical Journal, Vol. 390, Issue 1
  • DOI: 10.1042/bj20050277

Crystal structure of HIV-1 protease in situ product complex and observation of a low-barrier hydrogen bond between catalytic aspartates
journal, November 2006

  • Das, A.; Prashar, V.; Mahale, S.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 49
  • DOI: 10.1073/pnas.0605809103

The Low Barrier Hydrogen Bond in Enzymatic Catalysis
journal, October 1998

  • Cleland, W. Wallace; Frey, Perry A.; Gerlt, John A.
  • Journal of Biological Chemistry, Vol. 273, Issue 40
  • DOI: 10.1074/jbc.273.40.25529

New N -Acetyltransferase Fold in the Structure and Mechanism of the Phosphonate Biosynthetic Enzyme FrbF
journal, August 2011

  • Bae, Brian; Cobb, Ryan E.; DeSieno, Matthew A.
  • Journal of Biological Chemistry, Vol. 286, Issue 41
  • DOI: 10.1074/jbc.m111.263533

The Protein Data Bank
journal, January 2000


Phaser.MRage : automated molecular replacement
journal, October 2013

  • Bunkóczi, Gábor; Echols, Nathaniel; McCoy, Airlie J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 11
  • DOI: 10.1107/s0907444913022750

Substrate-assisted catalysis: Molecular basis and biological significance
journal, January 2000

  • Dall'Acqua, William; Carter, Paul
  • Protein Science, Vol. 9, Issue 1
  • DOI: 10.1110/ps.9.1.1

Analysis of the aac(3)-VIa gene encoding a novel 3-N-acetyltransferase.
journal, October 1993

  • Rather, P. N.; Mann, P. A.; Mierzwa, R.
  • Antimicrobial Agents and Chemotherapy, Vol. 37, Issue 10
  • DOI: 10.1128/aac.37.10.2074

Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes
journal, March 1993


GCN5-Related N-Acetyltransferases: A Structural Overview
journal, June 2000

  • Dyda, Fred; Klein, David C.; Hickman, Alison Burgess
  • Annual Review of Biophysics and Biomolecular Structure, Vol. 29, Issue 1
  • DOI: 10.1146/annurev.biophys.29.1.81

Mantid - Data Analysis and Visualization Package for Neutron Scattering and $μSR$ Experiments
text, January 2014


Works referencing / citing this record:

Unraveling the structural and chemical features of biological short hydrogen bonds
journal, January 2019


The Case of Formic Acid on Anatase TiO 2 (101): Where is the Acid Proton?
journal, July 2019

  • Tabacchi, Gloria; Fabbiani, Marco; Mino, Lorenzo
  • Angewandte Chemie, Vol. 131, Issue 36
  • DOI: 10.1002/ange.201906709

Low‐Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad
journal, September 2019

  • Kumar, Prashasti; Agarwal, Pratul K.; Waddell, M. Brett
  • Angewandte Chemie, Vol. 131, Issue 45
  • DOI: 10.1002/ange.201908535

The Case of Formic Acid on Anatase TiO 2 (101): Where is the Acid Proton?
journal, September 2019

  • Tabacchi, Gloria; Fabbiani, Marco; Mino, Lorenzo
  • Angewandte Chemie International Edition, Vol. 58, Issue 36
  • DOI: 10.1002/anie.201906709

Low‐Barrier and Canonical Hydrogen Bonds Modulate Activity and Specificity of a Catalytic Triad
journal, November 2019

  • Kumar, Prashasti; Agarwal, Pratul K.; Waddell, M. Brett
  • Angewandte Chemie International Edition, Vol. 58, Issue 45
  • DOI: 10.1002/anie.201908535

Symmetry and 1 H NMR chemical shifts of short hydrogen bonds: impact of electronic and nuclear quantum effects
journal, January 2020

  • Zhou, Shengmin; Wang, Lu
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 9
  • DOI: 10.1039/c9cp06840f

Unraveling the structural and chemical features of biological short hydrogen bonds
journal, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.