DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tertiary contacts control switching of the SAM-I riboswitch

Abstract

Riboswitches are non-coding RNAs that control gene expression by sensing small molecules through changes in secondary structure. While secondary structure and ligand interactions are thought to control switching, the exact mechanism of control is unknown. Using a novel two-piece assay that competes the anti-terminator against the aptamer, we directly monitor the process of switching. We find that the stabilization of key tertiary contacts controls both aptamer domain collapse and the switching of the SAM-I riboswitch from the aptamer to the expression platform conformation. Our experiments demonstrate that SAM binding induces structural alterations that indirectly stabilize the aptamer domain, preventing switching toward the expression platform conformer. These results, combined with a variety of structural probing experiments performed in this study, show that the collapse and stabilization of the aptamer domain are cooperative, relying on the sum of key tertiary contacts and the bimodal stability of the kink-turn motif for function. Here, ligand binding serves to shift the equilibrium of aptamer domain structures from a more open toward a more stable collapsed form by stabilizing tertiary interactions. Our data show that the thermodynamic landscape for riboswitch operation is finely balanced to allow large conformational rearrangements to be controlled by small molecule interactions.

Authors:
 [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Div. Theoretical Biology and Biophysics
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division
OSTI Identifier:
1625472
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Nucleic Acids Research
Additional Journal Information:
Journal Volume: 39; Journal Issue: 6; Journal ID: ISSN 0305-1048
Publisher:
Oxford University Press
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Biochemistry & Molecular Biology

Citation Formats

Hennelly, Scott P., and Sanbonmatsu, Karissa Y. Tertiary contacts control switching of the SAM-I riboswitch. United States: N. p., 2010. Web. doi:10.1093/nar/gkq1096.
Hennelly, Scott P., & Sanbonmatsu, Karissa Y. Tertiary contacts control switching of the SAM-I riboswitch. United States. https://doi.org/10.1093/nar/gkq1096
Hennelly, Scott P., and Sanbonmatsu, Karissa Y. Fri . "Tertiary contacts control switching of the SAM-I riboswitch". United States. https://doi.org/10.1093/nar/gkq1096. https://www.osti.gov/servlets/purl/1625472.
@article{osti_1625472,
title = {Tertiary contacts control switching of the SAM-I riboswitch},
author = {Hennelly, Scott P. and Sanbonmatsu, Karissa Y.},
abstractNote = {Riboswitches are non-coding RNAs that control gene expression by sensing small molecules through changes in secondary structure. While secondary structure and ligand interactions are thought to control switching, the exact mechanism of control is unknown. Using a novel two-piece assay that competes the anti-terminator against the aptamer, we directly monitor the process of switching. We find that the stabilization of key tertiary contacts controls both aptamer domain collapse and the switching of the SAM-I riboswitch from the aptamer to the expression platform conformation. Our experiments demonstrate that SAM binding induces structural alterations that indirectly stabilize the aptamer domain, preventing switching toward the expression platform conformer. These results, combined with a variety of structural probing experiments performed in this study, show that the collapse and stabilization of the aptamer domain are cooperative, relying on the sum of key tertiary contacts and the bimodal stability of the kink-turn motif for function. Here, ligand binding serves to shift the equilibrium of aptamer domain structures from a more open toward a more stable collapsed form by stabilizing tertiary interactions. Our data show that the thermodynamic landscape for riboswitch operation is finely balanced to allow large conformational rearrangements to be controlled by small molecule interactions.},
doi = {10.1093/nar/gkq1096},
journal = {Nucleic Acids Research},
number = 6,
volume = 39,
place = {United States},
year = {Fri Nov 19 00:00:00 EST 2010},
month = {Fri Nov 19 00:00:00 EST 2010}
}

Works referenced in this record:

The riboswitch-mediated control of sulfur metabolism in bacteria
journal, April 2003

  • Epshtein, V.; Mironov, A. S.; Nudler, E.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 9
  • DOI: 10.1073/pnas.0531307100

Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism
journal, September 2007

  • Ottink, O. M.; Rampersad, S. M.; Tessari, M.
  • RNA, Vol. 13, Issue 12
  • DOI: 10.1261/rna.635307

Structure–function relationships in RNA and RNP enzymes: Recent advances
journal, January 2007

  • Hoogstraten, Charles G.; Sumita, Minako
  • Biopolymers, Vol. 87, Issue 5-6
  • DOI: 10.1002/bip.20836

Structure of the S-adenosylmethionine riboswitch regulatory mRNA element
journal, June 2006


Genetic Control by Metabolite-Binding Riboswitches
journal, September 2003


Compaction of a Bacterial Group I Ribozyme Coincides with the Assembly of Core Helices
journal, February 2004

  • Perez-Salas, Ursula A.; Rangan, Prashanth; Krueger, Susan
  • Biochemistry, Vol. 43, Issue 6
  • DOI: 10.1021/bi035642o

The Importance of G·A Hydrogen Bonding in the Metal Ion- and Protein-induced Folding of a Kink Turn RNA
journal, August 2008


Mapping nucleic acid structure by hydroxyl radical cleavage
journal, April 2005


Melting and Premelting Transitions of an Oligomer Measured by DNA Base Fluorescence and Absorption
journal, October 1994

  • Xu, Daguang; Evans, Kervin O.; Nordlund, Thomas M.
  • Biochemistry, Vol. 33, Issue 32
  • DOI: 10.1021/bi00198a027

Riboswitches that Sense S-adenosylhomocysteine and Activate Genes Involved in Coenzyme Recycling
journal, March 2008


Discrimination between Closely Related Cellular Metabolites by the SAM-I Riboswitch
journal, February 2010

  • Montange, Rebecca K.; Mondragón, Estefanía; van Tyne, Daria
  • Journal of Molecular Biology, Vol. 396, Issue 3
  • DOI: 10.1016/j.jmb.2009.12.007

Folding of the SAM Aptamer is Determined by the Formation of a K-turn-dependent Pseudoknot
journal, January 2008

  • Heppell, Benoit; Lafontaine, Daniel A.
  • Biochemistry, Vol. 47, Issue 6
  • DOI: 10.1021/bi701164y

The Speed of RNA Transcription and Metabolite Binding Kinetics Operate an FMN Riboswitch
journal, April 2005


The Kinetics of Ligand Binding by an Adenine-Sensing Riboswitch
journal, October 2005

  • Wickiser, J. Kenneth; Cheah, Ming T.; Breaker, Ronald R.
  • Biochemistry, Vol. 44, Issue 40
  • DOI: 10.1021/bi051008u

Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme
journal, February 2003

  • Rangan, P.; Masquida, B.; Westhof, E.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 4
  • DOI: 10.1073/pnas.0337743100

The kink-turn motif in RNA is dimorphic, and metal ion-dependent
journal, February 2004


A mechanism for S-adenosyl methionine assisted formation of a riboswitch conformation: a small molecule with a strong arm
journal, August 2009

  • Huang, Wei; Kim, Joohyun; Jha, Shantenu
  • Nucleic Acids Research, Vol. 37, Issue 19
  • DOI: 10.1093/nar/gkp664

An mRNA structure that controls gene expression by binding S-adenosylmethionine
journal, August 2003

  • Winkler, Wade C.; Nahvi, Ali; Sudarsan, Narasimhan
  • Nature Structural & Molecular Biology, Vol. 10, Issue 9
  • DOI: 10.1038/nsb967

Less isn't always more
journal, December 2003


[6] Chemical probing of RNA by nucleotide analog interference mapping
book, January 2000


Ligand-Induced Folding of the Adenosine Deaminase A-Riboswitch and Implications on Riboswitch Translational Control
journal, May 2007


Folding of the Adenine Riboswitch
journal, August 2006


Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression
journal, October 2002

  • Winkler, Wade; Nahvi, Ali; Breaker, Ronald R.
  • Nature, Vol. 419, Issue 6910
  • DOI: 10.1038/nature01145

Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA
journal, March 2003

  • McDaniel, B. A. M.; Grundy, F. J.; Artsimovitch, I.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 6
  • DOI: 10.1073/pnas.0630422100

RNA Structure Analysis at Single Nucleotide Resolution by Selective 2‘-Hydroxyl Acylation and Primer Extension (SHAPE)
journal, March 2005

  • Merino, Edward J.; Wilkinson, Kevin A.; Coughlan, Jennifer L.
  • Journal of the American Chemical Society, Vol. 127, Issue 12
  • DOI: 10.1021/ja043822v

An mRNA structure in bacteria that controls gene expression by binding lysine
journal, October 2003


Structure–function relationships in RNA and RNP enzymes: Recent advances
journal, January 2007

  • Hoogstraten, Charles G.; Sumita, Minako
  • Biopolymers, Vol. 87, Issue 5-6
  • DOI: 10.1002/bip.20836

Genetic Control by Metabolite-Binding Riboswitches
journal, September 2003


Mapping nucleic acid structure by hydroxyl radical cleavage
journal, April 2005


Riboswitches: Fold and Function
journal, August 2006


The Importance of G·A Hydrogen Bonding in the Metal Ion- and Protein-induced Folding of a Kink Turn RNA
journal, August 2008


Riboswitches that Sense S-adenosylhomocysteine and Activate Genes Involved in Coenzyme Recycling
journal, March 2008


The GA motif: An RNA element common to bacterial antitermination systems, rRNA, and eukaryotic RNAs
journal, August 2001


Relationship between internucleotide linkage geometry and the stability of RNA
journal, October 1999


Melting and Premelting Transitions of an Oligomer Measured by DNA Base Fluorescence and Absorption
journal, October 1994

  • Xu, Daguang; Evans, Kervin O.; Nordlund, Thomas M.
  • Biochemistry, Vol. 33, Issue 32
  • DOI: 10.1021/bi00198a027

The Kinetics of Ligand Binding by an Adenine-Sensing Riboswitch
journal, October 2005

  • Wickiser, J. Kenneth; Cheah, Ming T.; Breaker, Ronald R.
  • Biochemistry, Vol. 44, Issue 40
  • DOI: 10.1021/bi051008u

Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression
journal, October 2002

  • Winkler, Wade; Nahvi, Ali; Breaker, Ronald R.
  • Nature, Vol. 419, Issue 6910
  • DOI: 10.1038/nature01145

Structure of the S-adenosylmethionine riboswitch regulatory mRNA element
journal, June 2006


An mRNA structure that controls gene expression by binding S-adenosylmethionine
journal, August 2003

  • Winkler, Wade C.; Nahvi, Ali; Sudarsan, Narasimhan
  • Nature Structural & Molecular Biology, Vol. 10, Issue 9
  • DOI: 10.1038/nsb967

The riboswitch-mediated control of sulfur metabolism in bacteria
journal, April 2003

  • Epshtein, V.; Mironov, A. S.; Nudler, E.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 9
  • DOI: 10.1073/pnas.0531307100

Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA
journal, March 2003

  • McDaniel, B. A. M.; Grundy, F. J.; Artsimovitch, I.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 6
  • DOI: 10.1073/pnas.0630422100

A mechanism for S-adenosyl methionine assisted formation of a riboswitch conformation: a small molecule with a strong arm
journal, August 2009

  • Huang, Wei; Kim, Joohyun; Jha, Shantenu
  • Nucleic Acids Research, Vol. 37, Issue 19
  • DOI: 10.1093/nar/gkp664

An mRNA structure in bacteria that controls gene expression by binding lysine
journal, October 2003


Natural Variability in S-Adenosylmethionine (SAM)-Dependent Riboswitches: S-Box Elements in Bacillus subtilis Exhibit Differential Sensitivity to SAM In Vivo and In Vitro
journal, November 2007

  • Tomšič, Jerneja; McDaniel, Brooke A.; Grundy, Frank J.
  • Journal of Bacteriology, Vol. 190, Issue 3
  • DOI: 10.1128/jb.01034-07

Identification of a Mutation in the Bacillus subtilis S-Adenosylmethionine Synthetase Gene That Results in Derepression of S-Box Gene Expression
journal, May 2006


The kink-turn motif in RNA is dimorphic, and metal ion-dependent
journal, February 2004


Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism
journal, September 2007

  • Ottink, O. M.; Rampersad, S. M.; Tessari, M.
  • RNA, Vol. 13, Issue 12
  • DOI: 10.1261/rna.635307

Works referencing / citing this record:

Light-activated chemical probing of nucleobase solvent accessibility inside cells
journal, January 2018

  • Feng, Chao; Chan, Dalen; Joseph, Jojo
  • Nature Chemical Biology, Vol. 14, Issue 3
  • DOI: 10.1038/nchembio.2548

Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism
journal, July 2017


Molecular insights into the ligand-controlled organization of the SAM-I riboswitch
journal, May 2011

  • Heppell, Benoit; Blouin, Simon; Dussault, Anne-Marie
  • Nature Chemical Biology, Vol. 7, Issue 6
  • DOI: 10.1038/nchembio.563

Erratum: Light-activated chemical probing of nucleobase solvent accessibility inside cells
journal, February 2018


Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch
journal, September 2017

  • Manz, Christoph; Kobitski, Andrei Yu; Samanta, Ayan
  • Nature Chemical Biology, Vol. 13, Issue 11
  • DOI: 10.1038/nchembio.2476

The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch
journal, May 2013


The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch
journal, December 2012

  • Hennelly, Scott P.; Novikova, Irina V.; Sanbonmatsu, Karissa Y.
  • Nucleic Acids Research, Vol. 41, Issue 3
  • DOI: 10.1093/nar/gks978

Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function
journal, February 2012


Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution
journal, January 2020


Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches
journal, July 2017


Fluorescence monitoring of riboswitch transcription regulation using a dual molecular beacon assay
journal, March 2013

  • Chinnappan, Raja; Dubé, Audrey; Lemay, Jean-François
  • Nucleic Acids Research, Vol. 41, Issue 10
  • DOI: 10.1093/nar/gkt190

RNA Tertiary Interactions in a Riboswitch Stabilize the Structure of a Kink Turn
journal, September 2011


Erratum: Light-activated chemical probing of nucleobase solvent accessibility inside cells
journal, February 2018


Fluorescence monitoring of riboswitch transcription regulation using a dual molecular beacon assay
journal, March 2013

  • Chinnappan, Raja; Dubé, Audrey; Lemay, Jean-François
  • Nucleic Acids Research, Vol. 41, Issue 10
  • DOI: 10.1093/nar/gkt190

Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch
journal, January 2019

  • Roy, Susmita; Hennelly, Scott P.; Lammert, Heiko
  • Nucleic Acids Research, Vol. 47, Issue 6
  • DOI: 10.1093/nar/gky1311

The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch
journal, May 2013


A magnesium-induced triplex pre-organizes the SAM-II riboswitch
journal, March 2017


Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches
journal, July 2017