DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ characterization of the high pressure – high temperature melting curve of platinum

Abstract

In this work, the melting line of platinum has been characterized both experimentally, using synchrotron X-ray diffraction in laser-heated diamond-anvil cells, and theoretically, using ab initio simulations. In the investigated pressure and temperature range (pressure between 10 GPa and 110 GPa and temperature between 300 K and 4800 K), only the face-centered cubic phase of platinum has been observed. The melting points obtained with the two techniques are in good agreement. Furthermore, the obtained results agree and considerably extend the melting line previously obtained in large-volume devices and in one laser-heated diamond-anvil cells experiment, in which the speckle method was used as melting detection technique. The divergence between previous laser-heating experiments is resolved in favor of those experiments reporting the higher melting slope.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2];  [3];  [4]; ORCiD logo [2]
  1. Diamond Light Source Ltd, Diamond House, Harwell Science Campus, Didcot, Oxfordshire, United Kingdom
  2. Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, Valencia, Spain
  3. CEA, DAM, DIF, F-91297, Arpajon, France
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Div.
Publication Date:
Research Org.:
Los Alamos National Lab (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); Natural Environment Research Council of Great Britain and Northern Ireland; Spanish Ministerio de Ciencia, Innovación y Universidades; Spanish Research Agency; European Fund for Regional Development; Generalitat Valenciana
OSTI Identifier:
1624489
Grant/Contract Number:  
AC52-06NA25396; NE/M000117/1; NE/M00046X/1; MAT2016-75586-C4-1-P; Prometeo/2018/123 EFIMAT; APOSTD/2017/075
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
Science & Technology - Other Topics

Citation Formats

Anzellini, Simone, Monteseguro, Virginia, Bandiello, Enrico, Dewaele, Agnès, Burakovsky, Leonid, and Errandonea, Daniel. In situ characterization of the high pressure – high temperature melting curve of platinum. United States: N. p., 2019. Web. doi:10.1038/s41598-019-49676-y.
Anzellini, Simone, Monteseguro, Virginia, Bandiello, Enrico, Dewaele, Agnès, Burakovsky, Leonid, & Errandonea, Daniel. In situ characterization of the high pressure – high temperature melting curve of platinum. United States. https://doi.org/10.1038/s41598-019-49676-y
Anzellini, Simone, Monteseguro, Virginia, Bandiello, Enrico, Dewaele, Agnès, Burakovsky, Leonid, and Errandonea, Daniel. Tue . "In situ characterization of the high pressure – high temperature melting curve of platinum". United States. https://doi.org/10.1038/s41598-019-49676-y. https://www.osti.gov/servlets/purl/1624489.
@article{osti_1624489,
title = {In situ characterization of the high pressure – high temperature melting curve of platinum},
author = {Anzellini, Simone and Monteseguro, Virginia and Bandiello, Enrico and Dewaele, Agnès and Burakovsky, Leonid and Errandonea, Daniel},
abstractNote = {In this work, the melting line of platinum has been characterized both experimentally, using synchrotron X-ray diffraction in laser-heated diamond-anvil cells, and theoretically, using ab initio simulations. In the investigated pressure and temperature range (pressure between 10 GPa and 110 GPa and temperature between 300 K and 4800 K), only the face-centered cubic phase of platinum has been observed. The melting points obtained with the two techniques are in good agreement. Furthermore, the obtained results agree and considerably extend the melting line previously obtained in large-volume devices and in one laser-heated diamond-anvil cells experiment, in which the speckle method was used as melting detection technique. The divergence between previous laser-heating experiments is resolved in favor of those experiments reporting the higher melting slope.},
doi = {10.1038/s41598-019-49676-y},
journal = {Scientific Reports},
number = 1,
volume = 9,
place = {United States},
year = {Tue Sep 10 00:00:00 EDT 2019},
month = {Tue Sep 10 00:00:00 EDT 2019}
}

Works referenced in this record:

Equations of state of six metals above 94 GPa
journal, September 2004


The equation of state of platinum to 660 GPa (6.6 Mbar)
journal, October 1989

  • Holmes, N. C.; Moriarty, J. A.; Gathers, G. R.
  • Journal of Applied Physics, Vol. 66, Issue 7
  • DOI: 10.1063/1.344177

The temperature-pressure-volume equation of state of platinum
journal, January 2009

  • Matsui, Masanori; Ito, Eiji; Katsura, Tomoo
  • Journal of Applied Physics, Vol. 105, Issue 1
  • DOI: 10.1063/1.3054331

Lattice dynamics and thermal equation of state of platinum
journal, July 2008


In situ synchrotron X-ray diffraction with laser-heated diamond anvil cells study of Pt up to 95 GPa and 3150 K
journal, January 2015

  • Huang, Xiaoli; Li, Fangfei; Zhou, Qiang
  • RSC Advances, Vol. 5, Issue 19
  • DOI: 10.1039/C4RA12769B

P-V-T equation of state of platinum to 80GPa and 1900K from internal resistive heating/x-ray diffraction measurements
journal, March 2008

  • Zha, Chang-Sheng; Mibe, Kenji; Bassett, William A.
  • Journal of Applied Physics, Vol. 103, Issue 5
  • DOI: 10.1063/1.2844358

Thermal equation of state for Pt
journal, November 2005


Fusion Curves of Four Group VIII Metals to 100 000 Atmospheres
journal, July 1959


High-pressure melting curve of platinum
journal, June 1998

  • Kavner, Abby; Jeanloz, Raymond
  • Journal of Applied Physics, Vol. 83, Issue 12
  • DOI: 10.1063/1.367520

High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt
journal, February 2013


The effects of chromatic dispersion on temperature measurement in the laser-heated diamond anvil cell
journal, June 2004


Melting curves of Cu, Pt, Pd and Au under high pressures
journal, February 2016

  • Zhang, Baoling; Wang, Baowen; Liu, Qingxin
  • International Journal of Modern Physics B, Vol. 30, Issue 05
  • DOI: 10.1142/S0217979216500132

The anisotropy of shock-induced melting of Pt observed in molecular dynamics simulations
journal, March 2010


Melting properties of Pt and its transport coefficients in liquid states under high pressures
journal, January 2016

  • Wang, Pan-Pan; Shao, Ju-Xiang; Cao, Qi-Long
  • International Journal of Modern Physics B, Vol. 30, Issue 01
  • DOI: 10.1142/S0217979215502501

Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar
journal, January 2012

  • Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Prakapenka, Vitali B.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2160

Toroidal diamond anvil cell for detailed measurements under extreme static pressures
journal, July 2018


The Structure of Iron in Earth's Inner Core
journal, October 2010


Melting of lead under high pressure studied using second-scale time-resolved x-ray diffraction
journal, October 2007


Melting of Iron at Earth's Inner Core Boundary Based on Fast X-ray Diffraction
journal, April 2013


The melting curve of Ni to 1 Mbar
journal, December 2014


Microstructures define melting of molybdenum at high pressures
journal, March 2017

  • Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14562

X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram
journal, March 2009

  • Santamaría-Pérez, D.; Ross, M.; Errandonea, D.
  • The Journal of Chemical Physics, Vol. 130, Issue 12
  • DOI: 10.1063/1.3082030

A high-pressure and high-temperature synthesis of platinum carbide
journal, January 2005

  • Ono, Shigeaki; Kikegawa, Takumi; Ohishi, Yasuo
  • Solid State Communications, Vol. 133, Issue 1
  • DOI: 10.1016/j.ssc.2004.09.048

High-pressure–high-temperature equation of state of KCl and KBr
journal, June 2012


High-pressure melting curve of titanium
journal, December 2015


High-pressure melting curves of alkali halides
journal, January 1996

  • Boehler, Reinhard; Ross, Marvin; Boercker, David B.
  • Physical Review B, Vol. 53, Issue 2
  • DOI: 10.1103/PhysRevB.53.556

Melting of Copper and Nickel at High Pressure: The Role of d Electrons
journal, October 2005


Laser-heating system for high-pressure X-ray diffraction at the Extreme Conditions beamline I15 at Diamond Light Source
journal, October 2018

  • Anzellini, Simone; Kleppe, Annette K.; Daisenberger, Dominik
  • Journal of Synchrotron Radiation, Vol. 25, Issue 6
  • DOI: 10.1107/S1600577518013383

Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline
journal, November 2013

  • Petitgirard, Sylvain; Salamat, Ashkan; Beck, Pierre
  • Journal of Synchrotron Radiation, Vol. 21, Issue 1
  • DOI: 10.1107/S1600577513027434

DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


TOPAS and TOPAS-Academic : an optimization program integrating computer algebra and crystallographic objects written in C++
journal, February 2018


Ab initio melting curve of osmium
journal, November 2015


Laser-heating system for high-pressure X-ray diffraction at the Extreme Conditions beamline I15 at Diamond Light Source
text, January 2018

  • Anzellini, Simone; Kleppe, Annette K.; Daisenberger, Dominik
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-00229

Lattice Dynamics and Thermal Equation of State of Platinum
text, January 2008


The melting curve of Ni to 1 Mbar
journal, December 2014


A high-pressure and high-temperature synthesis of platinum carbide
journal, January 2005

  • Ono, Shigeaki; Kikegawa, Takumi; Ohishi, Yasuo
  • Solid State Communications, Vol. 133, Issue 1
  • DOI: 10.1016/j.ssc.2004.09.048

Microstructures define melting of molybdenum at high pressures
journal, March 2017

  • Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14562

Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar
journal, January 2012

  • Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Prakapenka, Vitali B.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2160

P-V-T equation of state of platinum to 80GPa and 1900K from internal resistive heating/x-ray diffraction measurements
journal, March 2008

  • Zha, Chang-Sheng; Mibe, Kenji; Bassett, William A.
  • Journal of Applied Physics, Vol. 103, Issue 5
  • DOI: 10.1063/1.2844358

The temperature-pressure-volume equation of state of platinum
journal, January 2009

  • Matsui, Masanori; Ito, Eiji; Katsura, Tomoo
  • Journal of Applied Physics, Vol. 105, Issue 1
  • DOI: 10.1063/1.3054331

X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram
journal, March 2009

  • Santamaría-Pérez, D.; Ross, M.; Errandonea, D.
  • The Journal of Chemical Physics, Vol. 130, Issue 12
  • DOI: 10.1063/1.3082030

High-pressure melting curve of platinum
journal, June 1998

  • Kavner, Abby; Jeanloz, Raymond
  • Journal of Applied Physics, Vol. 83, Issue 12
  • DOI: 10.1063/1.367520

High pressure melting curve of platinum up to 35 GPa
conference, January 2018

  • Patel, Nishant N.; Sunder, Meenakshi
  • AIP Conference Proceedings
  • DOI: 10.1063/1.5028588

Melting curve of materials: theory versus experiments
journal, March 2004


Melting Curves of Copper, Silver, Gold, and Platinum to 70 kbar
journal, September 1967


High-pressure melting curve of platinum from ab initio Z method
journal, May 2012


High Melting Points of Tantalum in a Laser-Heated Diamond Anvil Cell
journal, June 2010


Noblest of All Metals Is Structurally Unstable at High Pressure
journal, January 2007


The Structure of Iron in Earth's Inner Core
journal, October 2010


Melting of Iron at Earth's Inner Core Boundary Based on Fast X-ray Diffraction
journal, April 2013


Works referencing / citing this record:

Thermal equation of state of ruthenium characterized by resistively heated diamond anvil cell
journal, October 2019


Melting curve and phase diagram of vanadium under high-pressure and high-temperature conditions
journal, September 2019


Resistivity, Seebeck coefficient, and thermal conductivity of platinum at high pressure and temperature
journal, December 2019


Topological Equivalence of the Phase Diagrams of Molybdenum and Tungsten
journal, January 2020


Oxidation of High Yield Strength Metals Tungsten and Rhenium in High-Pressure High-Temperature Experiments of Carbon Dioxide and Carbonates
journal, December 2019

  • Chuliá-Jordán, Raquel; Santamaría-Pérez, David; Marqueño, Tomás
  • Crystals, Vol. 9, Issue 12
  • DOI: 10.3390/cryst9120676

Thermal equation of state of ruthenium characterized by resistively heated diamond anvil cell
journal, October 2019