DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An experimental limit on the charge of antihydrogen

Abstract

The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation. A retrospective analysis of the influence of electric fields on antihydrogen atoms released from the ALPHA trap finds a mean axial deflection of 4.1±3.4 mm for an average axial electric field of 0.51 V mm–1. Combined with extensive numerical modelling, this measurement leads to a bound on the charge Qe of antihydrogen of Q=(–1.3±1.1±0.4) × 10–8. Here, e is the unit charge, and the errors are from statistics and systematic effects.

Authors:
 [1];  [2];  [3];  [4];  [5];  [1];  [6];  [7];  [7];  [8];  [9];  [10];  [10];  [11];  [12];  [13];  [2];  [7];  [14];  [10] more »;  [3];  [7];  [15];  [1];  [7];  [15];  [10];  [10];  [3];  [15];  [16];  [17];  [18];  [6];  [3];  [3];  [9];  [7];  [3];  [8];  [8];  [3] « less
  1. York Univ., Toronto, ON (Canada). Dept. of Physics and Astronomy
  2. Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Physics
  3. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  4. Univ. of Manchester (United Kingdom). School of Physics and Astronomy; The Cockcroft Inst., Warrington (United Kingdom). Daresbury Lab.
  5. Imperial College, London (United Kingdom). Centre for Cold Matter; European Organization for Nuclear Research (CERN), Geneva (Switzerland). Physics Dept.
  6. Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil). Instituto de Fısica
  7. Swansea Univ. (United Kingdom). College of Science, Dept. of Physics
  8. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  9. Univ. of Calgary, AB (Canada). Dept. of Physics and Astronomy
  10. TRIUMF, Vancouver, BC (Canada)
  11. Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Physics and Astronomy
  12. Centre for Cold Matter; European Organization for Nuclear Research (CERN), Geneva (Switzerland). Physics Dept.; Aarhus Univ. (Denmark). Dept. of Physics and Astronomy
  13. Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Physics and Astronomy; Canadian Inst. of Advanced Research, Toronto, ON (Canada)
  14. Stockholm Univ. (Sweden). Dept. of Physics
  15. Univ. of Liverpool (United Kingdom). Dept. of Physics
  16. Aarhus Univ. (Denmark). Dept. of Physics and Astronomy
  17. Purdue Univ., West Lafayette, IN (United States). Dept. of Physics
  18. NRCN-Nuclear Research Center Negev, Beer Sheva IL-(Israel). Dept. of Physics
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); USDOE Laboratory Directed Research and Development (LDRD) Program; National Science Foundation (NSF)
OSTI Identifier:
1623940
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 79 ASTRONOMY AND ASTROPHYSICS; Science & Technology - Other Topics; Atomic and molecular physics; Experimental particle physics

Citation Formats

Amole, C., Ashkezari, M. D., Baquero-Ruiz, M., Bertsche, W., Butler, E., Capra, A., Cesar, C. L., Charlton, M., Eriksson, S., Fajans, J., Friesen, T., Fujiwara, M. C., Gill, D. R., Gutierrez, A., Hangst, J. S., Hardy, W. N., Hayden, M. E., Isaac, C. A., Jonsell, S., Kurchaninov, L., Little, A., Madsen, N., McKenna, J. T. K., Menary, S., Napoli, S. C., Nolan, P., Olchanski, K., Olin, A., Povilus, A., Pusa, P., Rasmussen, C. Ø., Robicheaux, F., Sarid, E., Silveira, D. M., So, C., Tharp, T. D., Thompson, R. I., van der Werf, D. P., Vendeiro, Z., Wurtele, J. S., Zhmoginov, A. I., and Charman, A. E. An experimental limit on the charge of antihydrogen. United States: N. p., 2014. Web. doi:10.1038/ncomms4955.
Amole, C., Ashkezari, M. D., Baquero-Ruiz, M., Bertsche, W., Butler, E., Capra, A., Cesar, C. L., Charlton, M., Eriksson, S., Fajans, J., Friesen, T., Fujiwara, M. C., Gill, D. R., Gutierrez, A., Hangst, J. S., Hardy, W. N., Hayden, M. E., Isaac, C. A., Jonsell, S., Kurchaninov, L., Little, A., Madsen, N., McKenna, J. T. K., Menary, S., Napoli, S. C., Nolan, P., Olchanski, K., Olin, A., Povilus, A., Pusa, P., Rasmussen, C. Ø., Robicheaux, F., Sarid, E., Silveira, D. M., So, C., Tharp, T. D., Thompson, R. I., van der Werf, D. P., Vendeiro, Z., Wurtele, J. S., Zhmoginov, A. I., & Charman, A. E. An experimental limit on the charge of antihydrogen. United States. https://doi.org/10.1038/ncomms4955
Amole, C., Ashkezari, M. D., Baquero-Ruiz, M., Bertsche, W., Butler, E., Capra, A., Cesar, C. L., Charlton, M., Eriksson, S., Fajans, J., Friesen, T., Fujiwara, M. C., Gill, D. R., Gutierrez, A., Hangst, J. S., Hardy, W. N., Hayden, M. E., Isaac, C. A., Jonsell, S., Kurchaninov, L., Little, A., Madsen, N., McKenna, J. T. K., Menary, S., Napoli, S. C., Nolan, P., Olchanski, K., Olin, A., Povilus, A., Pusa, P., Rasmussen, C. Ø., Robicheaux, F., Sarid, E., Silveira, D. M., So, C., Tharp, T. D., Thompson, R. I., van der Werf, D. P., Vendeiro, Z., Wurtele, J. S., Zhmoginov, A. I., and Charman, A. E. Tue . "An experimental limit on the charge of antihydrogen". United States. https://doi.org/10.1038/ncomms4955. https://www.osti.gov/servlets/purl/1623940.
@article{osti_1623940,
title = {An experimental limit on the charge of antihydrogen},
author = {Amole, C. and Ashkezari, M. D. and Baquero-Ruiz, M. and Bertsche, W. and Butler, E. and Capra, A. and Cesar, C. L. and Charlton, M. and Eriksson, S. and Fajans, J. and Friesen, T. and Fujiwara, M. C. and Gill, D. R. and Gutierrez, A. and Hangst, J. S. and Hardy, W. N. and Hayden, M. E. and Isaac, C. A. and Jonsell, S. and Kurchaninov, L. and Little, A. and Madsen, N. and McKenna, J. T. K. and Menary, S. and Napoli, S. C. and Nolan, P. and Olchanski, K. and Olin, A. and Povilus, A. and Pusa, P. and Rasmussen, C. Ø. and Robicheaux, F. and Sarid, E. and Silveira, D. M. and So, C. and Tharp, T. D. and Thompson, R. I. and van der Werf, D. P. and Vendeiro, Z. and Wurtele, J. S. and Zhmoginov, A. I. and Charman, A. E.},
abstractNote = {The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation. A retrospective analysis of the influence of electric fields on antihydrogen atoms released from the ALPHA trap finds a mean axial deflection of 4.1±3.4 mm for an average axial electric field of 0.51 V mm–1. Combined with extensive numerical modelling, this measurement leads to a bound on the charge Qe of antihydrogen of Q=(–1.3±1.1±0.4) × 10–8. Here, e is the unit charge, and the errors are from statistics and systematic effects.},
doi = {10.1038/ncomms4955},
journal = {Nature Communications},
number = 1,
volume = 5,
place = {United States},
year = {Tue Jun 03 00:00:00 EDT 2014},
month = {Tue Jun 03 00:00:00 EDT 2014}
}

Works referenced in this record:

Proposed antimatter gravity measurement with an antihydrogen beam
journal, February 2008

  • Kellerbauer, A.; Amoretti, M.; Belov, A. S.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 266, Issue 3
  • DOI: 10.1016/j.nimb.2007.12.010

Determination of the Antiproton-to-Electron Mass Ratio by Precision Laser Spectroscopy of p ¯ He +
journal, June 2006


Measurement of the 1 s 2 s Energy Interval in Muonium
journal, February 2000


Review of Particle Physics
journal, July 2012


Measurement of the positronium 1 3 S 1 –2 3 S 1 interval by continuous-wave two-photon excitation
journal, July 1993


Progress towards microwave spectroscopy of trapped antihydrogen
journal, November 2011

  • Ashkezari, Mohammad D.; Andresen, Gorm B.; Baquero-Ruiz, Marcelo
  • Hyperfine Interactions, Vol. 212, Issue 1-3
  • DOI: 10.1007/s10751-011-0449-7

Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio
journal, July 2011

  • Hori, Masaki; Sótér, Anna; Barna, Daniel
  • Nature, Vol. 475, Issue 7357
  • DOI: 10.1038/nature10260

Description and first application of a new technique to measure the gravitational mass of antihydrogen
journal, April 2013


Antimatter
journal, May 1997


Cooling Neutral Atoms in a Magnetic Trap for Precision Spectroscopy
journal, October 1983


Production of antihydrogen at reduced magnetic field for anti-atom trapping
journal, December 2007

  • Andresen, G. B.; Bertsche, W.; Boston, A.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 41, Issue 1
  • DOI: 10.1088/0953-4075/41/1/011001

Production of antihydrogen
journal, February 1996


Testing the neutrality of matter by acoustic means in a spherical resonator
journal, May 2011


In situ electromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap
journal, January 2014


Trapped antihydrogen
journal, November 2010

  • Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.
  • Nature, Vol. 468, Issue 7324
  • DOI: 10.1038/nature09610

Antimatter Interferometry for Gravity Measurements
journal, March 2014


Precision Mass Spectroscopy of the Antiproton and Proton Using Simultaneously Trapped Particles
journal, April 1999


Production and detection of cold antihydrogen atoms
journal, September 2002


Background-Free Observation of Cold Antihydrogen with Field-Ionization Analysis of Its States
journal, October 2002


The ALPHA antihydrogen trapping apparatus
journal, January 2014

  • Amole, C.; Andresen, G. B.; Ashkezari, M. D.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 735
  • DOI: 10.1016/j.nima.2013.09.043

Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap
journal, January 2012


Antihydrogen annihilation reconstruction with the ALPHA silicon detector
journal, August 2012

  • Andresen, G. B.; Ashkezari, M. D.; Bertsche, W.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 684
  • DOI: 10.1016/j.nima.2012.04.082

Resonant quantum transitions in trapped antihydrogen atoms
journal, March 2012

  • Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.
  • Nature, Vol. 483, Issue 7390
  • DOI: 10.1038/nature10942

Macroscopic variations of surface potentials of conductors
journal, May 1991

  • Camp, J. B.; Darling, T. W.; Brown, Ronald E.
  • Journal of Applied Physics, Vol. 69, Issue 10
  • DOI: 10.1063/1.347601

Electric charges of positrons and antiprotons
journal, July 1992


A proposal for laser cooling antihydrogen atoms
journal, January 2013

  • Donnan, P. H.; Fujiwara, M. C.; Robicheaux, F.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 46, Issue 2
  • DOI: 10.1088/0953-4075/46/2/025302

Search for trapped antihydrogen
journal, January 2011


Synthesis of Cold Antihydrogen in a Cusp Trap
journal, December 2010


Experiments to determine the Force of Gravity on Single Electrons and Positrons
journal, November 1968

  • Witteborn, Fred C.; Fairbank, William M.
  • Nature, Vol. 220, Issue 5166
  • DOI: 10.1038/220436a0

A magnetic trap for antihydrogen confinement
journal, October 2006

  • Bertsche, W.; Boston, A.; Bowe, P. D.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 566, Issue 2
  • DOI: 10.1016/j.nima.2006.07.012

Nonlinear dynamics of anti-hydrogen in magnetostatic traps: implications for gravitational measurements
journal, October 2013


Trapped antihydrogen
journal, November 2010

  • Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.
  • Nature, Vol. 468, Issue 7324
  • DOI: 10.1038/nature09610

Nonlinear dynamics of anti-hydrogen in magnetostatic traps: implications for gravitational measurements
journal, October 2013


Autoresonant Excitation of Antiproton Plasmas
journal, January 2011


Trapped Antihydrogen in Its Ground State
journal, March 2012


Antimatter interferometry for gravity measurements
text, January 2013


Works referencing / citing this record:

Precision measurement of the mass difference between light nuclei and anti-nuclei
journal, August 2015

  • ALICE Collaboration,
  • Nature Physics, Vol. 11, Issue 10, p. 811-814
  • DOI: 10.1038/nphys3432

On the formation of trappable antihydrogen
journal, April 2018


Observation of the 1S–2S transition in trapped antihydrogen
journal, December 2016

  • Ahmadi, M.; Alves, B. X. R.; Baker, C. J.
  • Nature, Vol. 541, Issue 7638
  • DOI: 10.1038/nature21040

Prospects for comparison of matter and antimatter gravitation with ALPHA-g
journal, February 2018

  • Bertsche, W. A.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 376, Issue 2116
  • DOI: 10.1098/rsta.2017.0265

Precision measurements on trapped antihydrogen in the ALPHA experiment
journal, February 2018

  • Eriksson, S.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 376, Issue 2116
  • DOI: 10.1098/rsta.2017.0268

Simulations of Majorana spin flips in an antihydrogen trap
journal, July 2019

  • Alarcón, M. A.; Riggert, C. J.; Robicheaux, F.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 52, Issue 15
  • DOI: 10.1088/1361-6455/ab29aa

Physics with antihydrogen
journal, October 2015

  • Bertsche, W. A.; Butler, E.; Charlton, M.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 48, Issue 23
  • DOI: 10.1088/0953-4075/48/23/232001

Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions
journal, September 2016

  • Fischer, Charlotte Froese; Godefroid, Michel; Brage, Tomas
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 49, Issue 18
  • DOI: 10.1088/0953-4075/49/18/182004

Axial to transverse energy mixing dynamics in octupole-based magnetostatic antihydrogen traps
journal, May 2018


Formation of H ¯ + via radiative attachment of e + to H ¯
journal, January 2020


Search for new physics with atoms and molecules
journal, June 2018


Search for New Physics with Atoms and Molecules
text, January 2017


Simulations of Majorana spin flips in an antihydrogen trap
text, January 2019


Simulations of Majorana spin flips in an antihydrogen trap
journal, July 2019

  • Alarcón, M. A.; Riggert, C. J.; Robicheaux, F.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 52, Issue 15
  • DOI: 10.1088/1361-6455/ab29aa

Prospects for comparison of matter and antimatter gravitation with ALPHA-g
journal, February 2018

  • Bertsche, W. A.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 376, Issue 2116
  • DOI: 10.1098/rsta.2017.0265

In-beam measurement of the hydrogen hyperfine splitting - towards antihydrogen spectroscopy
text, January 2016