DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis, transport properties and electronic structure of p-type Cu1+xMn2–xInTe4(x = 0, 0.2, 0.3)

Abstract

The synthesis, electronic structure and temperature dependent transport properties of polycrystalline Cu1+xMn2–xInTe4 (x = 0, 0.2, 0.3) are reported for the first time. These quaternary chalcogenides were synthesized by direct reaction of the elements, followed by solid state annealing and hot press densification. The thermal conductivity is low for all specimens and intrinsic to the material system. Furthermore, the off-stoichiometry specimens illustrate the sensitivity of the transport properties to stoichiometry, with a greater than two-orders-of magnitude increase in carrier concentration with increased Cu content. First principles calculations of the electronic structure are also reported, and are in agreement with the experimental data. Here, this fundamental investigation shows the potential towards further optimization of the electrical properties that, in addition to the intrinsically low thermal conductivity, provides a basis for further research into the viability of this material system for potential energy-related applications.

Authors:
 [1];  [1];  [1];  [2];  [3];  [4]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Florida, Tampa, FL (United States)
  2. Univ. of Florida, Tampa, FL (United States); Florida State Univ., Tallahassee, FL (United States)
  3. Florida State Univ., Tallahassee, FL (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Science Foundation (NSF)
OSTI Identifier:
1615196
Grant/Contract Number:  
AC05-00OR22725; DMR-1644779; DMR-1748188
Resource Type:
Accepted Manuscript
Journal Name:
Dalton Transactions
Additional Journal Information:
Journal Volume: 49; Journal Issue: 7; Journal ID: ISSN 1477-9226
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Hobbis, Dean, Shi, Wencong, Popescu, Adrian, Wei, Kaya, Baumbach, Ryan E., Wang, Hsin, Woods, Lilia M., and Nolas, George S. Synthesis, transport properties and electronic structure of p-type Cu1+xMn2–xInTe4(x = 0, 0.2, 0.3). United States: N. p., 2020. Web. doi:10.1039/C9DT04069B.
Hobbis, Dean, Shi, Wencong, Popescu, Adrian, Wei, Kaya, Baumbach, Ryan E., Wang, Hsin, Woods, Lilia M., & Nolas, George S. Synthesis, transport properties and electronic structure of p-type Cu1+xMn2–xInTe4(x = 0, 0.2, 0.3). United States. https://doi.org/10.1039/C9DT04069B
Hobbis, Dean, Shi, Wencong, Popescu, Adrian, Wei, Kaya, Baumbach, Ryan E., Wang, Hsin, Woods, Lilia M., and Nolas, George S. Wed . "Synthesis, transport properties and electronic structure of p-type Cu1+xMn2–xInTe4(x = 0, 0.2, 0.3)". United States. https://doi.org/10.1039/C9DT04069B. https://www.osti.gov/servlets/purl/1615196.
@article{osti_1615196,
title = {Synthesis, transport properties and electronic structure of p-type Cu1+xMn2–xInTe4(x = 0, 0.2, 0.3)},
author = {Hobbis, Dean and Shi, Wencong and Popescu, Adrian and Wei, Kaya and Baumbach, Ryan E. and Wang, Hsin and Woods, Lilia M. and Nolas, George S.},
abstractNote = {The synthesis, electronic structure and temperature dependent transport properties of polycrystalline Cu1+xMn2–xInTe4 (x = 0, 0.2, 0.3) are reported for the first time. These quaternary chalcogenides were synthesized by direct reaction of the elements, followed by solid state annealing and hot press densification. The thermal conductivity is low for all specimens and intrinsic to the material system. Furthermore, the off-stoichiometry specimens illustrate the sensitivity of the transport properties to stoichiometry, with a greater than two-orders-of magnitude increase in carrier concentration with increased Cu content. First principles calculations of the electronic structure are also reported, and are in agreement with the experimental data. Here, this fundamental investigation shows the potential towards further optimization of the electrical properties that, in addition to the intrinsically low thermal conductivity, provides a basis for further research into the viability of this material system for potential energy-related applications.},
doi = {10.1039/C9DT04069B},
journal = {Dalton Transactions},
number = 7,
volume = 49,
place = {United States},
year = {Wed Jan 29 00:00:00 EST 2020},
month = {Wed Jan 29 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The prediction of semiconducting properties in inorganic compounds
journal, September 1958


Projector augmented-wave method
journal, December 1994


The Principles Determining the Structure of Complex Ionic Crystals
journal, April 1929

  • Pauling, Linus
  • Journal of the American Chemical Society, Vol. 51, Issue 4
  • DOI: 10.1021/ja01379a006

Synthesis and transport properties of Cu-excess Cu(Zn,Cd)2InTe4 quaternary chalcogenides
journal, April 2018


EXPGUI , a graphical user interface for GSAS
journal, April 2001


Polaronic transport in Ag-based quaternary chalcogenides
journal, September 2017

  • Wei, Kaya; Khabibullin, Artem R.; Stedman, Troy
  • Journal of Applied Physics, Vol. 122, Issue 10
  • DOI: 10.1063/1.5001690

Enhanced thermoelectric performance through grain boundary engineering in quaternary chalcogenide Cu 2 ZnSnSe 4
journal, April 2018

  • Zhu, Yingcai; Liu, Yong; Tan, Xing
  • AIP Advances, Vol. 8, Issue 4
  • DOI: 10.1063/1.5025482

Energy autonomy in sustainable communities—A review of key issues
journal, December 2012


Synthesis, crystal structure and electrical properties of the tetrahedral quaternary chalcogenides CuM2InTe4 (M=Zn, Cd)
journal, October 2016


Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu 2 CdSnSe 4
journal, October 2009

  • Liu, Min-Ling; Chen, I-Wei; Huang, Fu-Qiang
  • Advanced Materials, Vol. 21, Issue 37
  • DOI: 10.1002/adma.200900409

Chalcogenide Quaternary Cu2FeSnS4 Nanocrystals for Solar Cells: Explosive Character of Mechanochemical Synthesis and Environmental Challenge
journal, December 2017

  • Baláž, Peter; Baláž, Matej; Sayagués, María
  • Crystals, Vol. 7, Issue 12
  • DOI: 10.3390/cryst7120367

Electronic structure properties of CuZn 2 InTe 4 and AgZn 2 InTe 4 quaternary chalcogenides
journal, April 2019

  • Shi, Wencong; Khabibullin, Artem R.; Hobbis, Dean
  • Journal of Applied Physics, Vol. 125, Issue 15
  • DOI: 10.1063/1.5094628

Phase diagram of the (CuInTe2)1−x(2ZnTe)x system and crystal growth of CuZn2InTe4 from zinc chloride flux
journal, November 1979


A systematic method of deriving new semiconducting compounds by structural analogy
journal, July 1964


Crystal structure and transport properties of Ba8Ge43□3
journal, January 2010

  • Aydemir, U.; Candolfi, C.; Borrmann, H.
  • Dalton Trans., Vol. 39, Issue 4
  • DOI: 10.1039/B919726E

Composition Control and Thermoelectric Properties of Quaternary Chalcogenide Nanocrystals: The Case of Stannite Cu 2 CdSnSe 4
journal, December 2011

  • Ibáñez, Maria; Cadavid, Doris; Zamani, Reza
  • Chemistry of Materials, Vol. 24, Issue 3
  • DOI: 10.1021/cm2031812

Cu 2 ZnGeSe 4 Nanocrystals: Synthesis and Thermoelectric Properties
journal, February 2012

  • Ibáñez, Maria; Zamani, Reza; LaLonde, Aaron
  • Journal of the American Chemical Society, Vol. 134, Issue 9
  • DOI: 10.1021/ja211952z

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Synthesis, crystal structure, and transport properties of Cu 2.2 Zn 0.8 SnSe 4−x Te x (0.1 ≤ x ≤ 0.4)
journal, January 2015

  • Dong, Yongkwan; Eckert, Brian; Wang, Hsin
  • Dalton Transactions, Vol. 44, Issue 19
  • DOI: 10.1039/C5DT00910C

Enhanced thermoelectric properties of Cu2ZnSnSe4 with Ga-doping
journal, November 2015


Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators
journal, August 1995


BaCu 2 Sn(S,Se) 4 : Earth-Abundant Chalcogenides for Thin-Film Photovoltaics
journal, June 2016


Hot-Injection Synthesis of Cu-Doped Cu 2 ZnSnSe 4 Nanocrystals to Reach Thermoelectric zT of 0.70 at 450 °C
journal, October 2015

  • Chen, Dongsheng; Zhao, Yan; Chen, Yani
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 44
  • DOI: 10.1021/acsami.5b08011

Thermoelectrics
book, January 2001


Synthesis and Characterization of Nanostructured Stannite Cu2ZnSnSe4 and Ag2ZnSnSe4 for Thermoelectric Applications
journal, April 2015

  • Wei, Kaya; Nolas, George S.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 18, p. 9752-9757
  • DOI: 10.1021/acsami.5b01617

Improved Thermoelectric Performance in Nonstoichiometric Cu 2+δ Mn 1−δ SnSe 4 Quaternary Diamondlike Compounds
journal, March 2018

  • Song, Qingfeng; Qiu, Pengfei; Chen, Hongyi
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 12
  • DOI: 10.1021/acsami.7b19791

Single-crystal growth and physical properties of the layered arsenide BaRh 2 As 2
journal, September 2008


Phonon Scattering through a Local Anisotropic Structural Disorder in the Thermoelectric Solid Solution Cu 2 Zn 1– x Fe x GeSe 4
journal, December 2012

  • Zeier, Wolfgang G.; Pei, Yanzhong; Pomrehn, Gregory
  • Journal of the American Chemical Society, Vol. 135, Issue 2
  • DOI: 10.1021/ja308627v

Self-interaction correction to density-functional approximations for many-electron systems
journal, May 1981


A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S,Se)
journal, May 2009

  • Liu, Min-Ling; Huang, Fu-Qiang; Chen, Li-Dong
  • Applied Physics Letters, Vol. 94, Issue 20
  • DOI: 10.1063/1.3130718

Synthesis and thermoelectric properties of Cu excess Cu 2 ZnSnSe 4 : Synthesis and thermoelectric properties of Cu excess Cu
journal, November 2013

  • Dong, Yongkwan; Wang, Hsin; Nolas, George S.
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 8, Issue 1
  • DOI: 10.1002/pssr.201308274

Electronic properties of energy harvesting Cu-chalcogenides: p–d hybridization and d-electron localization
journal, October 2015


Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1−xInxSe4
journal, March 2009

  • Shi, X. Y.; Huang, F. Q.; Liu, M. L.
  • Applied Physics Letters, Vol. 94, Issue 12
  • DOI: 10.1063/1.3103604

The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators
journal, September 1991

  • Slack, Glen A.; Hussain, Moayyed A.
  • Journal of Applied Physics, Vol. 70, Issue 5
  • DOI: 10.1063/1.349385

Cu-based thermoelectric materials
journal, April 2016


Electronic structure of AlFeN films exhibiting crystallographic orientation change from c- to a-axis with Fe concentrations and annealing effect
journal, February 2020


Lead palladium titanate: A room temperature nanoscale multiferroic thin film
journal, February 2020