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Carbon-carbon burning plays an important role in many stellar environments. Recently, Tumino
et al. [Nature 557, 687 (2018)] reported a sharp rise of the astrophysical S factor for carbon-carbon
fusion determined using the indirect Trojan Horse method. We demonstrate that the rise at low
energies seen in the aforementioned work is an artefact of using an invalid plane-wave approximation
that neglects the Coulomb interactions. Our analysis shows that such a rise disappears if the
Coulomb (or Coulomb-nuclear) interactions in the initial and final states are included.
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I. INTRODUCTION

Recently, the indirect Trojan Horse method (THM)
was applied to measure the astrophysical S∗ factor of
12C + 12C fusion [1]. The method is based on using
a surrogate Trojan Horse (TH) reaction a(sx) + A →
s + F (xA) → s + b + B to determine the astrophys-
ical S∗(E) factor of the binary resonant subreaction
x + A → F → b + B. In the case under consideration
a = 14N, A = 12C, x = 12C, s = d, and F = 24Mg∗.
Four different channels in the final state were populated
in the THM experiment: p0 + 23Na, p1 + 23Na (0.44
MeV), α0 + 20Ne, and α1 + 20Ne (1.63 MeV) [1]. To
analyze the measured data Tumino et al. [1] used a
simple plane-wave approximation (PWA) developed by
one of us (A.M.M.). This approximation neglects the
Coulomb interactions between the fragments. In Refs.
[2, 3], a generalized R-matrix approach was developed
within the surface integral formalism [4]. The approach
uses distorted waves in both initial and final states (see
Eq. (117) of Ref. [2]). The PWA follows from this more
general approach when the distorted waves are replaced
with the plane waves. The PWA was successfully ap-
plied for analyses of many THM reactions in which the
spectator is a neutron. It was also applied to reactions
at energies above the Coulomb barrier in the initial and
final states, and when the interacting nuclei have small
charges [5, 6]. In the PWA it is assumed that the angu-
lar distribution of the spectator is forward-peaked in the
center-of-mass system (quasi-free kinematics) and that
the bound-state wave function of the spectator can be
factorized out (see Eq. (117) of Ref. [2] and Eq. (2)
of Ref. [1]). Usage of the PWA can be justified only
if the PWA and the distorted-wave-Born approximation
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(DWBA) give similar energy dependence for the differen-
tial cross section (DCS) of the transfer reaction. This is
because in the THM only the energy dependence of the
astrophysical factor is measured while its absolute value
is determined by normalizing the THM data to available
direct data at higher energies.

Tumino et al. [1] reported that the astrophysical S∗(E)
factors extracted from the THM experiment demonstrate
a steep rise when the resonance energy E decreases. This
rise would have profound implications on different astro-
physical scenarios as the carbon-carbon fusion rate calcu-
lated from the astrophysical S∗ factors deduced in Ref.
[1] significantly exceeds all previous estimations of the
reaction rate obtained by extrapolating the direct data
to the low-energy region. For example, the reaction rate
calculated in Ref. [1] at temperature T ∼ 2 × 108 K
exceeds the adopted value [7, 8] by a factor of 500.

The authors of Ref. [1] were rightly concerned about
the Coulomb barrier in the initial state. That is why in
the experiment the initial energy was above the Coulomb
barrier. However, given the energy of the emitted parti-
cles, neglecting the Coulomb effects in the final channel
is unjustified. The purpose of this paper is to present a
detailed analysis of the TH resonant reactions based on
the distorted-wave formalism. We take into account the
distortions in the initial, intermediate and final states.
The THM triple DCS is expressed in terms of the THM
amplitude obtained in Appendix A.

This paper is structured as follows. In Sect. II we give
expressions for various differential cross sections relevant
to the THM. A detailed critical analysis of the THM ex-
periment is presented in Sect. III. Renormalization pro-
cedure for the THM astrophysical factors is described in
Sect. IV. Section V presents the renormalized 12C+ 12C
fusion S∗ factors obtained by renormalizing the THM as-
trophysical factors reported in Ref. [1]. Finally, in Sect.
VI we highlight the main findings and draw conclusions.
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II. THM DIFFERENTIAL CROSS SECTIONS

A. Triple differential cross section

Let us consider the THM reaction

a+A→ s+ F ∗ → s+ b+ B, (1)

where a = (s x) is the Trojan Horse particle and F ∗ is
the resonance in the subsystem F = (xA). The idea of
the THM is to extract the information about the binary
resonant subreaction

x+A→ b+B. (2)

The TH reaction is a two-step reaction proceeding
through the intermediate resonance. The first step is
the transfer reaction a+A→ s+F ∗ populating the res-
onance state F ∗, which on the second stage decays into
the two-body channel b + B. Here we present equations
which will be used in the following sections. The energy
conservation in the center-off-mass (c.m.) of the TH re-
action reads

EaA − εsx = EsF + ExA = EsF + EbB −Qif , (3)

where Eαβ = k2αβ/(2µαβ), Qif = mx + mA − mb −
mB , Eαβ , kαβ and µαβ are the relative energy, relative
momentum and reduced mass of the particles α and β,
mα is the mass of the particle α, εsx is the binding energy
of the particles s and x in the TH particle a = (sx).

We introduce now a resonance energy in the subsystem
x+A: ER(xA) = E0(xA) − iΓ/2, E0(xA) is the real part
of the resonance energy in the channel x + A, Γ is the
total resonance width of the resonance F ∗ populated in
the transfer reaction. We consider a two-state coupled
channel problem in which the resonance formed in the
channel i = x + A decays into a different channel f =
b+B. Therefore, when in the channel i ExA → ER(xA)

the relative energy EbB approaches the resonance energy
ER(bB) in the channel f : ER(bB) = E0(bB) − iΓ/2. For
ExA → ER(xA), due to energy conservation [see (3)], one
gets that EsF → ER, where

ER = E0 − iΓ/2. (4)

Here

E0 = EaA − εsx − E0(xA) = EaA − εsx +Qif − E0(bB)

(5)

is the real part of the resonance energy in the system
s+ F .

The triple DCS at kbB → k0(bB) is given by [9]

d3σ

dΩkbB
dΩksF

dEsF

=
µaAµsF

(2π)
3

k0
kaA

k0(bB)

µbB

∣∣MR

∣∣2, (6)

where

∣∣MR

∣∣2 =
1

ĴaĴA

∑

MBMbMsMaMA

∣∣MMBMbMs;MAMa
(k0k̂sF ,kbB ,kaA)

∣∣2

=
1

ĴaĴA

∑

MFM ′

F
MAMaMs

MMFMs;MAMa
(k0k̂sF ,kaA) [MM ′

F
Ms;MAMa

(k0k̂sF ,kaA)]
∗

× |NC |2
(E0 − EsF )2 + Γ2/4

∑

MBMb

WMF

MBMb
(k0(bB))

[
W

M ′

F

MBMb
(k0(bB))

]∗
, (7)

Mtr = MMFMs;MAMa
(kRk̂sF ,kaA) is the a+A→ s+F ∗

transfer reaction amplitude and

WMF

MBMb
(k0(bB)) =

√
4 π

∑

lbjbmlb
νb

〈
jbνb JBMB

∣∣JFMF

〉

×
〈
lbmlb JbMb

∣∣jbνb
〉
Ylbmlb

(k0(bB))

× ei δ
p(k0(bB))

√
µbB Γ(bB)

k0(bB)
(8)

is the vertex form factor for the resonance decay F ∗ →
b+B. Here, Ji (Mi) is the spin (its projection) of particle

i, Ĵ = 2J+1, lb (mlb) is the b−B relative orbital angular

momentum (its projection) in the resonance F ∗, jb (νb) is
the total angular momentum (its projection) of particle b
in the resonance and δp(k0(bB)) is the potential scattering
phase shift in the bB channel. Taking into account that

∣∣Γ[1 + i η]
∣∣2 =

π η

sinh(π η)
(9)
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we get the Coulomb renormalization factor NC [10]

|NC |2 =
sinh[π(ηsb + ηsB)]

sinh(πηsb) sinh(πηsB)

πηsbηsB
(ηsb + ηsB)

πηζ
sinh(πηζ)

× |F (−iηsB,−iηsb, 1;−1)|2

× exp

[
2ζ arctan

2(E0(bB) − EbB)

Γ

]
, (10)

where

ζ = ηbs + ηBs − ηR, (11)

ηij = (Zi Zj/137)µij/kij , ηR = Zs ZF µsF /kR, Zi is the
charge of particle i.

It is convenient to integrate the triple DCS over ΩkbB

to get the double DCS [9], which is expressed in terms of
the DCS of the reaction a+A→ s+ F ∗ corresponding
to the first step of the TH reaction. However, in the case
under consideration, due to the presence of the Coulomb
renormalization factor NC , the DCS obtained from inte-
grating the triple DCS over ΩkbB

cannot be expressed
in terms of the DCS of the first step. The reason is that
NC depends on the integration variable ΩkbB

. However,
in the following cases one can neglect this dependence:

1. When |ηsb| ≪ 1 and ηsB ≈ η0, where
η0 = Zs ZF µsF /k0, the imaginary part of ηR
can be neglected because of the narrow resonance.
In this case, |NC | ≈ 1 and the integration over
ΩksF

can be performed without any complications.

2. When |ηsb| ≪ 1 and mB ≫ ms, mb. Let us
choose as independent variables the Galilean mo-
menta ks = ksF and kbB . Then one can write

ksB =
mB M

msB mbB

ksF +
ms

msB

kbB ≈ ksF . (12)

Then ηsB = (Zs ZB/137)µsB/ksF and NC does
not depend on kbB and integration over ΩkbB

can
be performed in a straightforward way.

For the TH reaction under consideration both cases
can be applied. We assume that |NC | = 1. Then we can
integrate the triple DCS over ΩkbB

using orthogonality
of the spherical harmonics to get the double DCS:

dσ

dΩksF
dEsF

=
1

2 π

ΓbB

(E0(bB) − EbB)
2
+ Γ2/4

dσ

dΩksF

, (13)

where

dσ

dΩksF

=
µaAµsF

4π2

ksF
kaA

∑

MFMsMAMa

× |MMFMs;MAMa
(k0k̂sF ,kaA)|2 (14)

is the DCS of the reaction a + A → s + F ∗. Note that
integrating over EsF gives

∞∫

0

dEsF

dσ

dΩksF
dEsF

=
ΓbB

Γ

dσ

dΩksF

, (15)

where ΓbB is the partial resonance width for the decay of
the resonance to the channel b+B.

B. Double differential cross section of THM

reactions proceeding though resonance in the binary

subsystem in the intermediate state

In the THM it is enough to consider the double DCS
dσ/(dΩksF

dEsF ) from which one needs to single out the
astrophysical S(ExA) factor for the two-coupled channel
resonant binary subreaction

x+A→ F ∗ → b+B (16)

at ExA → ER(xA), where ER(xA) = E − iΓ/2 is the
resonance energy in the channel x+A,

S(ExA)
ExA→ER(xA)

=
ĴF

Ĵx ĴA

5 π

µxA

λ2
N mu e

2π ηxA

× ΓbB ΓxA(
ER(xA) − ExA

)2
+ Γ2/4

, (17)

mu = 931.5 MeV is the atomic mass unit. Compar-
ing Eqs. (17) and (13) one can observe that to single
out the S(ExA) astrophysical factor from the latter it is
enough to single out from the DCS dσ/dΩksF

the reso-
nance width ΓxA. To this end in what follows we consider
the transformation of the Coulomb DWBA reaction am-
plitude MMFMs;MAMa

(k0k̂sF ,kaA) describing the trans-
fer reaction a+A→ s+F ∗ populating the resonance state
F ∗. This amplitude represents the first step of the THM
reaction. The Coulomb DWBA means that the distorted
waves in the initial and final states and the optical po-
tentials in the transition operator are the Coulomb ones.
The reason for using the Coulomb approximation is based
on the fact that in THM only the energy dependence of
the DCS is measured. The inclusion of the nuclear in-
teractions do not change significantly this energy depen-
dence, which can be very reasonably approximated by
the PWA. However, the Coulomb interactions can signif-
icantly affect the energy dependence of the THM DCS
when energies are near or below the Coulomb barrier.
The Coulomb DWBA transfer reaction amplitude in

the prior form is given by
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MMFMs;MAMa
(k0k̂sF ,kaA) =

∑

msxA
mlxA

Mx

〈
sxAmsxA

lxAmlxA

∣∣JFMF

〉〈
JxMx JAMA

∣∣sxAmsxA

〉

×
〈
ssxmssx lsxmlsx

∣∣JaMa

〉〈
JsMs JxMx

∣∣ssxmssx

〉
LDW (prior), (18)

with

LDW (prior) =
〈
Ψ

C(−)
ksF

φ̃R(xA)

∣∣VsA + VxA − UC
aA

∣∣φsx Ψ
C(+)
kaA

〉
.

(19)

Here sij (msij ) is the channel spin (its projection) in the
channel i + j, lij (mlij ) is the relative orbital angular
momentum of particles i and j, Ji (Mi) is the spin (its
projection) of particle i.

We use a three-body model of three constituents s, x
and A, all assumed to be structureless particles. In a
more general approach we need to introduce the projec-
tion operators to ensure that particles x and A are in
the ground states in the intermediate states of the trans-
fer reaction. In this case the bound-state wave function
φsx and the resonance wave function φR(xA) given by
Eq. (36) of Ref. [10], should be replaced by the overlap
functions. These overlap functions can be approximated
by the product of the two-body wave functions and the
square roots of the corresponding spectroscopic factors.
Because in the THM only the energy dependence of the
DCS are measured, these spectroscopic factors can be
dropped. In addition, here we use the two-body wave
functions rather than the overlap functions.

The matrix element in Eq. (19) involves integration
over variable rxA. Following Ref. [2] we can split the in-
tegral into the internal part, rxA < Rch and the external

part, rxA ≥ Rch:

LDW (prior) = L
DW (prior)
int + L

DW (prior)
ext , (20)

where

L
DW (prior)
int =

〈
Ψ

C(−)
ksF

φ̃R(xA)

∣∣VsA + VxA

− UC
dA

∣∣φsx Ψ
C(+)
kaA

〉∣∣∣
rxA<Rch

(21)

and

L
DW (prior)
ext =

〈
Ψ

C(−)
ksF

φ̃R(xA)

∣∣VsA + VxA

− UC
dA

∣∣φsx Ψ
C(+)
kaA

〉∣∣∣
rxA≥Rch

. (22)

Here, Rch is the channel radius, which is chosen so that at
rxA > Rch the nuclear x−A interaction can be neglected.
It was shown in Ref. [2] that

L
DW (prior)
int = L

DW (post)
int + L

DW (prior)
S , (23)

where

L
DW (post)
int =

〈
Ψ

C(−)
ksF

φ̃R(xA)

∣∣Vsx + VsA

− UC
sF

∣∣φsx Ψ
C(+)
kaA

〉∣∣∣
rxA<Rch

, (24)

and

L
DW (prior)
S =

〈
Ψ

C(−)
ksF

φ̃R(xA)

∣∣←−T xA −
−→
T xA

∣∣φsx Ψ
C(+)
kaA

〉∣∣∣
rxA=Rch

=
R2

ch

2µxA

∫
drsFΨ

C(+)
−ksF

(rsF )

∫
dΩrxA

×
[
φsx(rsx)Ψ

C(+)
kaA

(raA)
∂φR(xA)(rxA)

∂rxA
− φR(xA)(rxA)

∂φsx(rsx)Ψ
C(+)
kaA

(raA)

∂rxA

]∣∣∣
rxA=Rch

, (25)

where TxA is the kinetic energy operator of the relative
motion of particles x andA. An arrow above the operator
points to the direction of its action.

Let us consider now the external matrix element cor-
responding to rxA > Rch. In the external region
VsA + VxA − UC

aA ≈ V C
sA + V C

xA − UC
sF . The distance

between s and x is limited because of the presence of the

bound-state wave function φsx. Because s and x are close
to each other the external matrix element containing the
transition operator V C

sA + V C
xA − UC

sF should be small.

The internal matrix element consists of two terms,
the internal post-form Coulomb DWBA amplitude

L
DW (post)
int and the surface term L

DW (prior)
S . The internal

Coulomb or Coulomb+nuclear DWBA in the post form
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should be small due to the highly oscillatory behavior of
the binned resonance wave functions (this will be demon-
strated in the next section). Note also that the smaller
the resonance energy the smaller is the contribution of
the internal region.

Then the dominant contribution to the matrix element
LDW (prior) comes from the surface term L

DW (prior)
S . We

transform now the surface matrix element into zero-range
DWBA amplitude. To this end we use

raA = rxA +
ms

msx

rsx, rsF =
mA

mxA

rxA + rsx. (26)

Rewriting the wave functions Ψ
C(+)
kaA

(raA) and

Ψ
C(+)
−ksF

(rsF ) in the momentum space we get

L
DW (prior)
S =

R2
ch

2µxA

∫
drsF

∫
dpsF

(2 π)3

∫
dpaA

(2 π)3
Ψ

C(+)
ksF

(psF )Ψ
C(+)
kaA

(paA)φsx(rsx)e
−ipsx·rsx

∫
dΩrxA

×
[
eipxA·rxA

∂φR(xA)(rxA)

∂rxA
− φR(xA)(rxA)

∂ eipxA·rxA

∂rxA

]∣∣∣
rxA=Rch

, (27)

where

pxA = paA −
mA

mF

psF , psx = psF −
ms

ma

paA. (28)

Taking into account that rxA = Rch is larger than the nuclear interaction radius we replace the relative pxA by

the on-the-energy-shell (ONES) momentum k(xA) = kaA − mA

mF
ksF . We consider L

DW (prior)
S at the real part of the

(xA) resonance energy , i.e., kxA = k0(xA) and ksF = k0. Then returning to the coordinate-space representation for

L
DW (prior)
S we get

L
DW (prior)
S =

R2
ch

2µxA

MDWZR(prior)

∫
dΩxA

[
e−ik0(xA)·rxA

∂φR(xA)(rxA)

∂rxA
− φR(xA)(rxA)

e−ik0(xA)·rxA

∂rxA

]∣∣∣
rxA=Rch

. (29)

Here,

MDWZR(prior) =

∫
drsx Ψ

C(+)
−k0

(rsx)φsx(rsx)Ψ
C(+)
kaA

(
ms

ma

rsx

)
. (30)

is the DWBA amplitude, which does not depend on the resonant wave function φR(xA) and VxA potential. This
equation looks like the zero-range DWBA (ZRDWBA). However, in contrast to the standard zero-range approximation,
Eq. (30) can be used for arbitrary value of the orbital momentum of the resonance state (xA).
Note that replacing in Eq. (30) the distorted waves by the plane waves leads to the PWA introduced in [5] and

used in [1].
Integrating over ΩrxA

and using Eq. (36) from [10] for the external resonant wave function we arrive at

L
DW (prior)
S = e−i δp(k0(xA))

√
1

µxA k0(xA)
ΓxA

1

2
OlxA

(k0(xA)Rch)MDWZR(prior)i−lxA YlxA,mlxA
(k̂0(xA))WlxA

(E,Rch),

(31)

where

WlxA
(E,Rch) =

[
jlxA

(k0(xA)rxA)
[
Rch

∂ln[OlxA
(k0(xA)rxA)]

∂rxA
− 1

]
−Rch

∂jlxA
(k0(xA)rxA)

∂rxA

] ∣∣∣
rxA=Rch

. (32)

Since L
DW (prior)
S gives a dominant contribution, we use LDW (prior) ≈ L

DW (prior)
S . Substituting L

DW (prior)
S for

LDW (prior) in Eq. (18) we get

MMFMs;MAMa
(k0k̂sF ,kaA) =i−lxAe−i δp(k0(xA))

√
1

µxA k0(xA)
ΓxA

1

2
OlxA

(k0(xA)Rch) jlxA
(k0(xA)Rch)

×WlxA
YlxA,mlxA

(k̂0(xA))M
DWZR(prior)
MFMs;MAMa

(k0k̂sF ,kaA), (33)
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where

M
DWZR(prior)
MFMs;MAMa

(k0k̂sF ,kaA) =
∑

msxA
mlxA

Mx

〈
sxAmsxA

lxAmlxA

∣∣JFMF

〉〈
JxMx JAMA

∣∣sxAmsxA

〉

×
〈
ssxmssx lsxmlsx

∣∣JaMa

〉〈
JsMs JxMx

∣∣ssxmssx

〉
MDWZR(prior). (34)

Returning to Eq. (13) we can now rewrite it as

dσTHM

dΩksF
dEsF

= S(ExA) e
−2π ηxA P−1

lxA
(k(0)xA, Rch)

Ĵx ĴA

ĴF

l̂xARch

80 π2
λ−2
N m−1

u

∣∣WlxA
(E,Rch)

∣∣2 dσDWZR(prior)

dΩksF

(35)

We assigned to it the superscript “THM” because this double DCS can be used to analyze THM data. We assume

that k̂0(xA) is directed along the axis z, that is, YlxA,mlxA

(
k̂0(xA)

)
=

√
(2 lxA + 1)/4 π δmlxA

0. With this for the
DCS of the reaction a+A→ s+ F ∗ populating the resonance state F ∗ we get

dσDWZR(prior)

dΩksF

=
µaAµsF

4π2

ksF
kaA

∑

MFMsMAMa

∣∣∣MDWZR(prior)
MFMs;MAMa

(k0k̂sF ,kaA)
∣∣∣
2

. (36)

III. CRITICAL ANALYSIS OF THE THM

EXPERIMENT

A. Kinematics of the THM reaction

In Ref. [1] the normalization of the THM data to the
direct data was done in the energy interval E = 2.5−2.63
MeV, where E is the 12C − 12C relative kinetic energy.
Here and in what follows we use ExA ≡ E. To check
whether the PWA is justified, we consider the kinematics
of the THM in the energy interval covered by the THM
experiment [1]. In the THM experiment [1] the relative
14N−12C energy in the entrance channel is EaA = 13.845
MeV. From energy conservation in the THM reaction,
see Eq. (3), it follows that EaA +Q = Ef , where Ef =
EsF + EbB is the total kinetic energy of the final three-
body system s+b+B and Q = ma+mA−ms−mb−mB.
From this equation we get that the total kinetic energy
in the final d+ p+ 23Na channel is Ef = 5.8 MeV.

Let us consider the 12C− 12C relative energy E = 2.63
MeV [1] which is the highest point of the THM normal-
ization interval. For the binary reaction 12C + 12C →
p + 23Na, we have Q2 = 2.24 MeV, where Q2 = mx +
mA−mb−mB. Accordingly, the energy in the p+ 23Na
channel corresponding to E = 2.63 MeV is Ep 23Na = 4.87
MeV. Hence, the relative kinetic energy of the deuteron
and the c.m. of the p+23Na system corresponding to this
energy is Ed 24Mg = 0.93 MeV. This energy is well bellow
the Coulomb barrier in the d − 24Mg system, which is
about 3 MeV. Even on the lower end of the normaliza-
tion interval corresponding to E = 2.5 MeV, the relative
energy is Ed 24Mg = 1.06 MeV.

At the energy of E = 1.5 MeV in the 12C− 12C chan-
nel, which corresponds to the energy Ep 23Na = 3.74 MeV
in the exit channel, the relative energy Ed 24Mg = 2.06
MeV. This is still below the Coulomb barrier. Note that
the resonance energies that can be observed in the THM

experiment are E < 3.56 MeV. This is due to the fact
that at E > 3.56 MeV, the resonance energy in the
p + 23Na channel is 3.56 + Q2 > 5.8 MeV. In other
words, the d− 24Mg relative energy is Ed 24Mg < 0. Even
for the energy of E = 0.805 MeV, which corresponds
to Ep 23Na = 3.05 MeV, the d − 24Mg relative energy is
Ed 24Mg = 2.75 MeV. The latter is close to but still below
the Coulomb barrier.
Figure 1 demonstrates the dependence of Ed 24Mg on

the relative 12C− 12C energy E. One can see that within
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FIG. 1. The dependence of the relative kinetic energy Ed 24Mg

on the relative 12C −
12C kinetic energy E. Calculations are

done at E12C 14N = 13.85 MeV. The grey column is the for-
bidden area by the energy conservation law. The horizontal
dotted line corresponds to the Coulomb barrier in the system
d−

24Mg.

the entire energy interval measured in the THM exper-
iment [1] the energy Ed 24Mg < 3 MeV. Especially low
the energy is in the interval E = 2.5 − 2.63 MeV used
for THM normalization to direct data. Thus we may
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conclude that the Coulomb interaction plays a very im-
portant role in the energy interval exploited in [1] and,
therefore, cannot be neglected.

B. DWBA differential cross section

The presence of the strong Coulomb interaction for
such deep sub-Coulomb processes in the final state of the
transfer reaction significantly increases the DCS in the
backward hemisphere, shifting the peak of the angular
distribution of the deuterons to the backward angles. It
completely contradicts to the PWA differential cross sec-
tion in the c.m. system, which has a pronounced peak at
forward angles. Even at the lowest observed resonances
at 0.8 − 0.9 MeV in the THM experiment [1] the angu-
lar distribution of the deuterons noticeably deviates from
the PWA one if the Coulomb (or Coulomb plus nuclear)
rescattering effects in the initial and final states of the
12C transfer reaction are included.
But what is even more important is the fact that the

presence of the strong Coulomb interaction significantly
changes the absolute values of the DCSs of the 12C trans-
fer reaction and their variation with energy. The absolute
values of the DCSs in the THM normalization interval be-
come smaller than the corresponding PWA ones by more
than three orders of magnitude and they increase rapidly
when the resonance energy decreases. That is one of the
main reasons for the drop of the THM astrophysical fac-
tors found in this work compared to those extracted in
[1] using the PWA.
Below we demonstrate the PWA and DWBA DCSs

for the THM reaction. Eq. (35) will be used to ob-
tain the energy dependence of the astrophysical factor.
It employs the zero-range DWBAZR DCS. In this DCS
the resonance vertex 12C + 12C → 24Mg∗ is excluded.
It allows us to calculate the excitation function in the
whole energy interval E = 0.8−2.64 MeV covered by the
THM experiment without need to refer to any specific
resonance. This is especially important because some re-
ported resonances in [1] have a negative parity, which is
forbidden in collisions of two identical bosons with zero
spins. It means that the accuracy of the identification of
resonance spins in [1] is ±1. Another important point for
using the DWBAZR DCS is related with our intention to
renormalize the S factor of the carbon-carbon fusion by
taking into account the distortion in the initial and final
states. Furthermore, in [1], where a simplified PWA was
used, the resonance vertex was completely excluded. The
only information about resonance is contained in the fac-
tor WlxA

, which depends on the orbital angular momen-
tum of the resonance lxA. That is why to be consistent
with Ref. [1] we also eliminate the resonance vertex from
the DWBA reaction amplitude.
We start by considering the PWA calculations used in

[1]. However, in contrast to [1], in our PWA calcula-
tions we include the resonance vertex. In each figure we
present three different curves corresponding to three dif-

TABLE I. Parameters of the 12C −
12C potentials used to

calculate the resonance bin wave functions.

E (MeV) No. V (MeV) r (fm) a (fm) width (MeV)

2.7 Potential 1 58.87 1.25 2.40 3.595 × 10−3

2.7 Potential 2 94.51 1.05 2.40 4.924 × 10−3

2.7 Potential 3 221.95 1.25 1.85 3.104 × 10−4

1.5 Potential 1 110.57 2.80 3.05 2.189 × 10−3

1.5 Potential 2 60.07 2.60 3.05 2.253 × 10−4

1.5 Potential 3 150.8 2.80 2.30 1.055 × 10−4

0.8 Potential 1 140.47 4.50 4.50 2.165 × 10−5

0.8 Potential 2 185.284 4.20 4.50 2.022 × 10−5

0.8 Potential 3 198.798 4.50 4.04 9.566 × 10−6

ferent potentials describing the resonance in 24Mg given
in Table I. We use the standard notations for the poten-
tial parameters shown in Table I: V is the depth of the
Woods-Saxon potential, r and a are the radial parameter
and the diffuseness.
Using the potentials from Table I we make the bin

functions for the 12C − 12C resonance states. The bins
are made by integrating over the 12C − 12C scatter-
ing wave functions within a range of 12C − 12C rel-
ative energies centered at the resonant energy with a
width of 0.05 MeV. This width corresponds to a typi-
cal experimental energy resolution. The bin wave func-
tions are made real by normalization using a factor of
sin[δ(k12C 12C)] exp [−iδ(k12C 12C)] [11], where δ(k12C 12C)
is the 12C − 12C scattering phase shift. The bin sizes
affect the resulting bin wave functions, and, hence, the
amplitude of the THM transfer reaction but they do not
affect much the shapes of the angular distributions.
The resonance energies given in Table I are selected

from the high end, middle and low energy interval mea-
sured in [1]. Note that we are not able to reproduce ex-
actly the location of the resonances reported in [1] but the
obtained resonance energy are pretty close to the corre-
sponding experimental ones. The bin wave functions for
the three resonance energies constructed using the poten-
tials from Table I are depicted in Fig. 2. The highly oscil-
latory behavior of the resonance wave functions is a clear
evidence that the internal Coulomb or Coulomb+nuclear
DWBA in the post form should be small (see Section II
B).
The PWA DCSs for three resonance energies E =

2.7, 1.5 and 0.8 MeV of the 12C− 12C system are shown
in Fig. 3. Each panel contains three lines corresponding
to three different potentials for each resonance energy,
see Table I.
Next we show the DWBA DCSs calculated using the

bin wave functions shown in Fig. 2. Figure 4 presents the
Coulomb DWBA DCSs calculated at the same three res-
onance energies of the system 12C− 12C. We performed
calculations using the pure Coulomb DWBA (thin lines)
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FIG. 2. The bin wave functions calculated for three resonance
energies E = 2.7, 1.5 and 0.8 MeV of the 12C−

12C system.
Each panel contains three lines corresponding to three differ-
ent potentials for each resonance energy. The red solid, blue
dashed and black dotted curves correspond to the potentials
1, 2 and 3 from Table I. Panel (a): E = 2.7 MeV; panel (b):
E = 1.5 MeV; panel (c): E = 0.8 MeV.

and the Coulomb + nuclear DWBA (thick lines). The
optical-model potential parameters are taken from the
compilation [12], namely, parameters for the 14N + 12C
potential at 27.3 MeV and the d+ 24Mg potential at 3.3
MeV are used for the entrance and exit channels, respec-
tively. The relative energy between the deuteron and the
c.m. of the 24Mg subsystem depends on the excitation
energy of the latter. In principle, different optical po-
tentials should be used in the exit channel for each 24Mg
excitation energy. However, our calculations suggest that
the DCSs of the transfer reaction depend weakly on the
choice of the exit-channel optical model potentials. This
is because the relative d+24Mg energies in the exit chan-
nel are so low that the Coulomb interaction dominates
over the exit-channel distorted waves. For this reason,
the same exit-channel optical potential is used for all the
cases.
In our approach we use the surface-integral approach,

see Ref [2], in which the dominant contribution is given
by the external part. To demonstrate that this is indeed
the case for the reaction under consideration, in Fig. 5
we present the comparison of the Coulomb DWBA cal-
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FIG. 3. The PWA DCSs for the 14N + 12C → d + 24Mg∗

reaction at the relative kinetic energy E12C 14N = 13.85 MeV
populating three resonant states in 24Mg: E = 2.7, 1.5 and
0.8 MeV. Each panel contains three lines corresponding to
three different potentials for each resonance energy. The red
solid, blue dashed and black dotted curves correspond to the
potentials 1, 2 and 3 from Table I. Panel (a): E = 2.7 MeV;
panel (b): E = 1.5 MeV; panel (c): E = 0.8 MeV.

culated without and with cut-off of the transfer reaction
matrix element at R12C 12C = 7.3 fm. The latter cor-
responds to the cut-off radius used in [1] for the PWA
calculations.
Finally, we show the deuteron momentum dependence

of the Coulomb DWBA DCSs. We introduce the mo-
mentum

q = kd −
md

m14N
k14N, (37)

where in the c.m. of the 14N+ 12C→ d+ 24Mg∗ reaction
we have kd = kd24Mg and k14N = k14N12C.
The momentum q is the Galilean invariant momen-

tum transfer in the 14N+ 12C→ d+ 24Mg∗ reaction. In
the PWA, q = qd 12C is the d− 12C relative momentum.
Thus, in the PWA, according to Eq. (37), the d−12C rel-
ative momentum is observable because it is expressed in
terms of the relative momenta of the particles in the ini-
tial and final states of the transfer reaction. At the same
time, in the DWBA, due to rescattering of the particles
in the initial and final states, it is impossible to determine
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FIG. 4. The DWBA DCSs for the 14N + 12C → d + 24Mg∗

reaction at the relative kinetic energy E12C 14N = 13.85 MeV
populating three resonant states in 24Mg. Panel (a): E =
2.7 MeV; panel (b): E = 1.5 MeV and panel (c): E = 0.8
MeV. Each panel contains six lines. The thin (thick) red
solid, blue dashed and black dotted curves correspond to the
Coulomb (Coulomb + nuclear) DWBA DCSs calculated using
the 12C −

12C bin wave functions for the potentials 1, 2 and
3 from Table I, respectively. Note that the DWBA DCSs in
panel (a) are multiplied by 103.

the d−12C relative momentum. Expressing the deuteron
scattering angle in terms of q at fixed kd and k14N one
can determine the dependence of the DWBA DCS on q.
Since q = qd12C, the dependence of the PWA DCS on q is
determined by the momentum dependence of the Fourier
transform of the square of the s-wave d−12C bound-state
wave function φ2

d 12C(q). By comparing the dependence
of the DWBA DCS and φ2

d12C on q we can determine the
effect of the distortions for the THM reaction and the
validity of the PWA.
Using Eq. (37) we get

dσ

dq
=

m14N

md

q

kd24Mgk14N12C

1

sin θ

dσ

dθ
, (38)

where cos θ = k̂d · k̂14N, k̂ = k/k. The DCS dσ/dq calcu-
lated for three different resonance energies E = 2.7, 1.5
and 0.8 MeV and three potentials from Table I are shown
in Fig. 6.
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FIG. 5. Comparison of the Coulomb DWBA DCSs for the
14N + 12C → d + 24Mg∗ reaction populating three resonant
states in 24Mg calculated with and without cut-off in the ma-
trix element over r12C 12C. The solid red lines: the Coulomb
DWBA DCSs calculated without cut-off; black dotted line:
the internal part of the Coulomb post-form DWBA DCSs
calculated for r12C 12C ≤ 7.3 fm; blue dashed line: the exter-
nal part of the Coulomb post-form DWBA DCSs calculated
for r12C 12C ≥ 7.3 fm. Panel (a): E = 2.7 MeV; panel (b):
E = 1.5 MeV and panel (c): E = 0.8 MeV. All the calcu-
lations were performed using the bin wave functions for the
potential 1 from Table I.

From the presented figures we can draw the following
conclusions:

• The PWA and the DWBA DCSs differ significantly
both in the angular distributions and energy de-
pendences. In particular, the DWBA calculations
show that in the interval of the resonance energies
E = 1.5 − 2.7 MeV the angular distributions have
backward peaks in contrast to the PWA ones. This
is a very important point. As we will see below,
the different energy dependences of the PWA and
DWBA DCSs lead to very different energy depen-
dences of the astrophysical factors calculated using
the PWA and DWBA.

• The ratio of the DCSs from the PWA and the
DWBA at E = 2.7 MeV and 0.8 MeV are com-
pletely different. The DWBA DCSs at any angle at



10

10
−3

10
−2

10
−1

         

 

 

(a)

 0

 20

 40

 60

 80

         

d
σ/

d
q

 (
m

b
 f

m
)

 

(b)

 0

 20

 40

 60

 80

 100

 120

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 

q (fm
−1

)

(c)

FIG. 6. The Coulomb DWBA DCSs dσ/dq for the 14N +
12C → d + 24Mg∗ reaction at the relative kinetic energy
E12C 14N = 13.85 MeV populating three resonant states in
24Mg: E = 2.7, 1.5 and 0.8 MeV. Panel (a): E = 2.7 MeV;
panel (b): E = 1.5 MeV and panel (c): E = 0.8 MeV. Each
panel contains three lines corresponding to three different po-
tentials for each resonance energy. The red solid, blue dashed
and black dotted curves correspond to the potentials 1, 2 and
3 from Table I, respectively.

E = 2.7 MeV are significantly smaller than those at
E = 0.8 MeV. This happens only if the Coulomb or
the Coulomb plus nuclear distortions are taken into
account. This is an additional corroboration of the
fact that at the resonance energies of the THM nor-
malization interval E = 2.5-2.63 MeV considered
in [1], the THM reactions are deep sub-Coulomb.
This makes their DWBA DCSs extremely small.
The absolute value of the DWBA DCS increases
when E decreases because the energy of the out-
going deuteron increases approaching the Coulomb
barrier.

As we will see later [see Eq. (41) below] for the S
factor the DWBA DCS appears in the denomina-
tor. A very small DCS at high E should signifi-
cantly increase the THM astrophysical factor. As
the energy E decreases the DWBA DCS increases
and the S(E) factor quickly drops. For compar-
ison we set our renormalization factor R(E) [see
Eq. (43) below] equal to unity at E = 2.664 MeV,

which is on the upper border of the THM normal-
ization interval considered in [1]. The significant
rise of the DWBA DCS toward small E is the fac-
tor that most contributes to the drop of the THM
S(E).

• The momentum distributions of the deuterons at
E = 2.7 and 1.5 MeV completely contradict the
momentum distribution of the deuterons given by
the Fourier transform of the deuteron bound-state
wave function in 14N, see the extended data given
in Fig. 1 of Ref. [1]. This serves an additional con-
firmation that the PWA-based Eq. (2) of Ref. [1]
leading to the factorization of the deuteron bound-
state wave function is not valid. Note that the reso-
nance energyE = 1.5 MeV corresponds to the most
effective astrophysical energy for carbon-carbon fu-
sion.

IV. RENORMALIZATION OF THM

ASTROPHYSICAL FACTORS

Thus we have provided a compelling evidence that the
Coulomb effects must be included. Next we describe the
correct procedure, which shows how the S factors de-
duced in Ref. [1] should be renormalized taking into ac-
count the distortion effects in the initial and final states
of the transfer reaction.
We start from the THM double DWBA DCS given by

Eq. (35) which can be rewritten as

d2σTHM

dEdΩksF

= K(E)S(E)
∣∣WlxA

(E,Rch)
∣∣2 dσDWZR(prior)

dΩksF

.

(39)

Here,

K(E) = e−2π ηxA P−1
lxA

(k(0)aA, Rch)
Ĵx ĴA

ĴF

l̂xARch

80 π2
λ−2
N m−1

u

(40)

is a trivial kinematical factor, E ≡ ExA,

dσDWZR(prior)/dΩksF
is the zero-range DWBA cross

section of the 14N+12C→ d+24Mg∗ reaction populating
the isolated resonance state, θs is the scattering angle of
the spectator s in the c.m. of the THM reaction, S(E)
is the astrophysical factor.
Correspondingly, the THM astrophysical factor deter-

mined from Eq. (39) is

S(E) =
NF

K(E)

d2σTHM

dE dΩksF

1
∣∣WlxA

(E,Rch)
∣∣2

× 1

dσDWZR(prior)(E, cos θs)/dΩksF

. (41)

Here NF is an overall, energy-independent factor for nor-
malization of the THM data to direct data. We recall
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that in the THM only the energy dependence of the as-
trophysical factor is measured. Its absolute value is de-
termined by normalizing the THM S(E) factor to the
direct data available at higher energies.

Equations (39) and (41) are pivotal for understand-
ing the problem of extraction of the S(E) factor from
the THM differential cross section. Because in the
normalization interval of E = 2.5 − 2.66 MeV the
outgoing deuterons are below the Coulomb barrier,
dσDWZR(prior)(E, cos θs)/dΩksF

is small and rapidly in-
creases when the resonance energy E decreases. This
increase of dσDWZR(prior)(E, cos θs)/dΩksF

should reflect
in the behavior of d2σTHM/dEdΩksF

and the THM S(E)
factor. As we mentioned, in Ref. [1] a simple PWA was
used instead of the distorted waves. The DCS as a func-
tion of EdF obtained using the PWA changes very little
compared to the change of the DWBA DCS. This is the
main reason why the THM S(E) factors show unusually
high rise when E decreases.

In [1] the selected normalization interval was chosen
to be E = 2.5 − 2.63 MeV. However, there are two res-
onances with negative parities that are questionable be-
cause the collision of the two identical bosons 12C+ 12C
cannot populate resonances with the negative parity.
There are two resonances with positive parities cited in
[1]: at 2.664 and 2.537 MeV. It was underscored in [1]
that the THM data reproduce the higher-lying resonance.
That is why here we use the resonance at 2.664 MeV for
the normalization of the THM data to direct ones. Thus,
we assume here that the normalization factor NF is de-
termined by normalizing the THM astrophysical factor
to the directly measured resonance at E = 2.664 MeV.
Practically we selected the normalization of the THM
data on the edge of the energy interval measured in [1].

To find the renormalization of the THM astrophysi-
cal factor presented in [1] we recall that in the PWA
the THM astrophysical factor for an isolated resonance
is given by

S(PWA)(E) =
NF

K(E)

d2σTHM

dE dΩksF

1

φ2
sx(E) |WlxA

(E,Rch)|2
.

(42)

The factorWlxA
was obtained in [2], φsx(E) is the Fourier

transform of the a = (s x) bound-state wave function.
The Fourier transform, actually, depends on q = ksx,
which is in the case under consideration is q = kd 12C and
expressed in terms of kd. From energy conservation, see
Eq. (3), it follows that EsF = EaA − εsx − E, where
E ≡ ExA and EsF = Es. Hence the Fourier transform of
the bound-state wave function φsx(q) depends on E.

By taking the ratio of the S(E) factors given by Eqs.
(41) and (42) and normalizing it to unity at E = EN

we get the renormalization factor of the THM astrophys-
ical factor presented in [1], but this time including the
Coulomb (Coulomb + nuclear) distorted waves in the

initial and final states of the THM transfer reaction

R(E) =
φ2
sx(E)

φ2
sx(EN )

dσDWZR(prior)(EN , cos θs)/dΩksF

dσDWZR(prior)(E, cos θs)/dΩksF

,

(43)

where EN is the THM normalization energy.

V. ASTROPHYSICAL FACTORS FOR THE
12C−

12C FUSION FROM THM REACTION

In this section we present new 12C− 12C fusion S∗ fac-
tors obtained by renormalizing the THM astrophysical
factors presented in [1]. For renormalization the factor
R(E) given in Eq. (43) is used. The DWBA DCSs are
calculated using the FRESCO code [11]. For compari-
son we also calculate dσDWZR(prior)(E, cos θs)/dΩksF

in-
cluding the nuclear distortions. To calculate the optical-
model distorted waves we use the optical potentials from
Ref. [12] as described above. Following [1] we use the
normalization energy EN = 2.664 MeV.
The Woods-Saxon potential for the bound-state wave

function φd 12C has a depth of 34.459 MeV and standard
shape: a = 0.65 fm and r0 = rC = 1.25 fm, where r0 and
rC are the nuclear and the Coulomb radial parameters.
With this potential the 14N bound-state wave function
has one node away from the origin. The calculated d−12C
radial s-wave bound-state wave function and the square
of its Fourier transform are shown in Fig. 7. To calculate
the Fourier transform of the bound-state wave function as
a function of the resonance energy E we use Eq. (37). In
the c.m., q2 depends on kd = kd 24Mg, k14N = k14N 12C

and cos θ, where θ is the deuteron scattering angle in
the c.m. of the THM transfer reaction 14N + 12C →
d+ 24Mg. We fix the scattering angle at θ = 15 deg and
consider k14N fixed taking into account the fact that the
experimental 14N − 12C relative energy is 13.85 MeV.
From Eq. (3), where E ≡ ExA, it follows that kd and,
hence, q are functions of E.
To calculate the energy dependence of renormalization

factor R(E) we need to know the energy dependence of
|φd 12C(E)|2 shown in panel (b) of Fig. 7, and the en-
ergy dependence of the DWBAZR DCS, where E is the
12C − 12C relative energy at a fixed deuteron scattering
angle. As mentioned earlier, employing the DWBAZR
DCS where the resonance 12C − 12C wave function is
excluded, allows us to scan the energy behavior of the
DWBA DCS without any information about resonances
in the 12C + 12C system. The energy dependence of the
DWBAZR at the deuteron scattering angle of 15 degree
in the c.m. of the reaction is shown in Fig. 8.
The renormalized astrophysical factors are compared

with original ones from [1] in Figs. 9 and 10. The renor-
malized astrophysical factors are R(E)S∗(E), where
S∗(E) are taken from [1] (here we use the notation
for the S factor from [1]). Panel (a) of Fig. 9 shows
the behavior of the astrophysical factor for the channel
p0 +

23Na. As seen in panels (b), (c) and (d), a similar
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FIG. 7. Panel (a): the d−12C radial s-wave bound-state wave
function calculated using the Woods-Saxon potential with the
depth 34.4588 MeV and the standard parameters, r0 = 1.25
fm and a = 0.65 fm. Panel (b): the magnitude-square of the
Fourier transform of the d −

12 C bound-state wave function
from panel (a) as a function of the resonance energy E of the
12C−

12C system.

behavior of the R(E)S∗(E) factors is found for the three
other channels, p1 + 23Na(0.44MeV), α0 + 20Ne and
α1 +

20Ne(1.63MeV). Therefore, in Fig. 10 we show the
total astrophysical factors, by summing the astrophysical
factors of the four final channels detected in [1]. We find
that at the resonance energies E = 0.8 − 0.9 MeV the
renormalization factor R(E) decreases the THM astro-
physical factors from [1] by about a factor of 103.
We conclude from Figs. 9 and 10 that the inclusion of

the distorted waves in the initial and final states elimi-
nates the sharp raise of the S∗(E) factors extracted in
[1] using the THM in the PWA. This constitutes the
main result of our paper. In this work we merely renor-
malized the astrophysical factors reported in [1], taking
into account the distorted waves as required. Hence, our
renormalized S∗ factors do not, and are not supposed to,
exhibit new resonances. They just follow the resonance
structure of the astrophysical factors obtained in [1].
Our estimations of the DWBA DCSs of the 12C trans-

fer reaction show that in the THM normalization interval
of 2.5 − 2.664 MeV, the DWBA DCSs are of the order
of 10−4 − 10−5 mb/sr. Such small DCSs can hardly be
measured in the coincidence experiment. That is why
the THM data are not reliable at higher energies. The
absence in the THM data of a strong isolated resonance
at E ∼ 2.1 MeV observed in Stella experiment [13] con-
firms the doubts about the quality of the high-energy
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FIG. 8. The excitation function of the THM transfer reaction
14N+ 12C → d+ 24F∗ calculated using the zero-range DWBA
at the scattering angle of the deuteron of 15 degree in the c.m.
of the reaction. The solid red line is for the pure Coulomb
DWBA and the dashed blue line for the Coulomb + nuclear
DWBA.

THM data at E > 2 MeV, which is important for nor-
malization of the THM data.
To corroborate our findings further, in Fig. 11 we

present the renormalization factors R(E) at three differ-
ent incident 14N energies: 30, 33 and 35 MeV. The first
energy is used in the THM experiment in Ref. [1]. We
see a strong drop of R(E) for E14N = 30 MeV . We do
not discuss here whether the higher energies would allow
one to cover the whole resonance energy interval. We
just demonstrate that when the incident energy of 14N
increases the renormalization factor quickly approaches
unity confirming that the Coulomb distortions are the
main reason for the drop of R(E) at 30 MeV. This again
confirms that at this energy the simple PWA is not valid.

VI. SUMMARY

The Trojan Horse method is a powerful and unique
indirect technique that allows one to measure the astro-
physical factors of the resonant reactions at low energies,
where direct methods are not able to obtain data due to
very small cross sections. A compelling evidence of the
power of the THM at astrophysically-relevant energies is
clearly demonstrated in [1] by discovering a strong reso-
nance peak in 24Mg∗ at E < 0.9 MeV. This region is not
reachable by any direct method. However, we question
the validity of the results for the astrophysical factors re-
ported in [1] using the plane-wave approximation. Since
the THM deals with three-body reactions rather than
binary ones, a reliable theoretical analysis of the THM
data becomes critically important. For the THM reac-
tions with the neutron-spectator or for the reactions with
the energies above the Coulomb barrier and for interact-
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FIG. 9. Astrophysical S∗(E) factors for 12C + 12C fusion.
Panel (a): S∗(E) factors for the reaction 12C + 12C → p0 +
23Na. Black solid line is the S∗(E) factor from [1]. The red
dashed line is the renormalized R(E)S∗(E) factor calculated
using the pure Coulomb distortions. The blue dotted line
is the renormalized R(E)S∗(E) factor calculated using the
Coulomb plus nuclear distortions. Panel (b): S∗(E) factors
for the reaction 12C+ 12C → p1+

23Na(0.44MeV), where the
23Na excitation energy is 0.44 MeV. Panel (c): S∗(E) factors
for the reaction 12C + 12C → α0 + 20Ne. Panel (d): S∗(E)
factors for the reaction 12C + 12C → α1 + 20Ne(1.63MeV).
The notations in panels (b), (c) and (d) are the same as in
panel (a).

ing nuclei with small charges, the simple PWA works
quite well and the THM results are expected to be reli-
able. However, this is not the case for the THM reaction
under consideration, which aims to determine the astro-
physical factors of 12C + 12C fusion. In this process we
deal with the strong Coulomb interactions in the initial
and final states of the THM transfer reaction. More-
over, the energies of the deuteron-spectator in the final
state are significantly below the Coulomb barrier at the
energies of the normalization interval of the THM data
to direct ones. We have demonstrated here that the re-
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FIG. 10. Total S∗(E) factors for 12C + 12C fusion. Black
solid line is the S∗(E) factor from [1]. The red dashed line is
the renormalized R(E)S∗(E) factor calculated using the pure
Coulomb distortions. The blue dotted line is the renormalized
R(E)S∗(E) factor calculated using the Coulomb plus nuclear
distortions.
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FIG. 11. Renormalization factors R(E) calculated at three
different incident energies of 14N. Red lines are R(E) for
E14N = 30 MeV: solid line is calculated with pure Coulomb
distortions, dashed line corresponds to the Coulomb plus nu-
clear distortions; blue lines are R(E) for E14N = 33 MeV:
dotted line is for the Coulomb distortions, dash-dotted line is
for the Coulomb plus nuclear distortions; magenta lines are
R(E) for E14N = 35 MeV: dash-dotted-dotted line is for the
Coulomb distortions, short dash line is for the Coulomb plus
nuclear distortions.

placement of the PWA by the approach, which takes into
account the Coulomb or Coulomb + nuclear distortions,
decreases the THM astrophysical factors reported in Ref.
[1] at the resonance energies of E = 0.8− 0.9 MeV by up
to 103 times. We would like to add that the recent most
accurate direct measurements, which are extended down
to E = 2.1 MeV [13] do not agree with the results from
[1]. We believe that the problem with the astrophysi-
cal factors for the carbon-carbon fusion reaction calls for
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new direct and indirect experiments.
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