DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Giant reversible barocaloric response of (MnNiSi)1-x (FeCoGe)x (x = 0.39, 0.40, 0.41)

Abstract

MnNiSi-based alloys and isostructural systems have traditionally demonstrated impressive magnetocaloric properties near room temperature associated with a highly tunable first-order magnetostructural transition that involves large latent heat. However, these materials are limited by a small field-sensitivity of the transition, preventing significant reversible effects usable for cooling applications. Instead, the concomitant large transition volume changes prompt a high pressure-sensitivity, and therefore, promise substantial barocaloric performances, but they have been sparsely studied in these materials. Here, we study the barocaloric response in a series of composition-related (MnNiSi)1-x(FeCoGe)x (x = 0.39, 0.40, 0.41) alloys that span continuously over a wide temperature range around ambient. We report on giant reversible effects of ~40 J K-1 kg-1 and up to ~4 K upon application of ~2 kbar and find a degradation of the first-order transition properties with pressure that limits the barocaloric effects at high pressures. Our results confirm the potential of this type of alloys for barocaloric applications, where multicaloric and composite possibilities, along with the high density and relatively high thermal conductivity, constructively add to the magnitude of the caloric effects.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1];  [3];  [3]; ORCiD logo [1];  [2]
  1. Univ. Politècnica de Catalunya, Barcelona, Catalonia (Spain). Campus Diagonal-Besòs, Barcelona Research Center in Multiscale Science and Engineering
  2. Louisiana State Univ., Baton Rouge, LA (United States)
  3. Southern Illinois Univ., Carbondale, IL (United States)
Publication Date:
Research Org.:
Southern Illinois Univ., Carbondale, IL (United States); Louisiana State Univ., Baton Rouge, LA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Ministry of Economic Affairs and Digital Transformation of Spain (MINECO)
OSTI Identifier:
1609723
Alternate Identifier(s):
OSTI ID: 1529409; OSTI ID: 1872897
Grant/Contract Number:  
FG02-06ER46291; SC0010521; FG02-13ER46946
Resource Type:
Accepted Manuscript
Journal Name:
APL Materials
Additional Journal Information:
Journal Volume: 7; Journal Issue: 6; Journal ID: ISSN 2166-532X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Thermodynamic properties; Thermodynamic measurements and instrumentation; Calorimetry; Alloys; Entropy; X-ray diffraction; Compressors; Refrigerators; Phase transitions; Magnetic ordering; 36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; barocaloric effect; magnetocaloric effect; phase transitions

Citation Formats

Lloveras, Pol, Samanta, Tapas, Barrio, María, Dubenko, Igor, Ali, Naushad, Tamarit, Josep-Lluís, and Stadler, Shane. Giant reversible barocaloric response of (MnNiSi)1-x (FeCoGe)x (x = 0.39, 0.40, 0.41). United States: N. p., 2019. Web. doi:10.1063/1.5097959.
Lloveras, Pol, Samanta, Tapas, Barrio, María, Dubenko, Igor, Ali, Naushad, Tamarit, Josep-Lluís, & Stadler, Shane. Giant reversible barocaloric response of (MnNiSi)1-x (FeCoGe)x (x = 0.39, 0.40, 0.41). United States. https://doi.org/10.1063/1.5097959
Lloveras, Pol, Samanta, Tapas, Barrio, María, Dubenko, Igor, Ali, Naushad, Tamarit, Josep-Lluís, and Stadler, Shane. Tue . "Giant reversible barocaloric response of (MnNiSi)1-x (FeCoGe)x (x = 0.39, 0.40, 0.41)". United States. https://doi.org/10.1063/1.5097959. https://www.osti.gov/servlets/purl/1609723.
@article{osti_1609723,
title = {Giant reversible barocaloric response of (MnNiSi)1-x (FeCoGe)x (x = 0.39, 0.40, 0.41)},
author = {Lloveras, Pol and Samanta, Tapas and Barrio, María and Dubenko, Igor and Ali, Naushad and Tamarit, Josep-Lluís and Stadler, Shane},
abstractNote = {MnNiSi-based alloys and isostructural systems have traditionally demonstrated impressive magnetocaloric properties near room temperature associated with a highly tunable first-order magnetostructural transition that involves large latent heat. However, these materials are limited by a small field-sensitivity of the transition, preventing significant reversible effects usable for cooling applications. Instead, the concomitant large transition volume changes prompt a high pressure-sensitivity, and therefore, promise substantial barocaloric performances, but they have been sparsely studied in these materials. Here, we study the barocaloric response in a series of composition-related (MnNiSi)1-x(FeCoGe)x (x = 0.39, 0.40, 0.41) alloys that span continuously over a wide temperature range around ambient. We report on giant reversible effects of ~40 J K-1 kg-1 and up to ~4 K upon application of ~2 kbar and find a degradation of the first-order transition properties with pressure that limits the barocaloric effects at high pressures. Our results confirm the potential of this type of alloys for barocaloric applications, where multicaloric and composite possibilities, along with the high density and relatively high thermal conductivity, constructively add to the magnitude of the caloric effects.},
doi = {10.1063/1.5097959},
journal = {APL Materials},
number = 6,
volume = 7,
place = {United States},
year = {Tue Jun 25 00:00:00 EDT 2019},
month = {Tue Jun 25 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature
journal, December 2015

  • Wu, Rong-Rong; Bao, Li-Fu; Hu, Feng-Xia
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep18027

From single- to double-first-order magnetic phase transition in magnetocaloric Mn1−xCrxCoGe compounds
journal, April 2010

  • Trung, N. T.; Biharie, V.; Zhang, L.
  • Applied Physics Letters, Vol. 96, Issue 16
  • DOI: 10.1063/1.3399774

Giant magnetocaloric effects by tailoring the phase transitions
journal, April 2010

  • Trung, N. T.; Zhang, L.; Caron, L.
  • Applied Physics Letters, Vol. 96, Issue 17
  • DOI: 10.1063/1.3399773

Giant barocaloric tunability in [(CH 3 CH 2 CH 2 ) 4 N]Cd[N(CN) 2 ] 3 hybrid perovskite
journal, January 2018

  • Bermúdez-García, Juan Manuel; Yáñez-Vilar, Susana; García-Fernández, Alberto
  • Journal of Materials Chemistry C, Vol. 6, Issue 37
  • DOI: 10.1039/c7tc03136j

Magnetostructural transition and magnetocaloric effect in MnNiSi-Fe 2 Ge system
journal, November 2015

  • Zhang, C. L.; Shi, H. F.; Ye, E. J.
  • Applied Physics Letters, Vol. 107, Issue 21
  • DOI: 10.1063/1.4936610

Tailoring barocaloric and magnetocaloric properties in low-hysteresis magnetic shape memory alloys
journal, September 2015


Giant Negative Thermal Expansion in Bonded MnCoGe-Based Compounds with Ni 2 In-Type Hexagonal Structure
journal, January 2015

  • Zhao, Ying-Ying; Hu, Feng-Xia; Bao, Li-Fu
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja510693a

Large barocaloric effects at low pressures in natural rubber
journal, July 2017


Near room temperature magnetocaloric properties and the universal curve of MnCoGe 1−x Cu x
journal, May 2017

  • Si, Xiaodong; Liu, Yongsheng; Lu, Xiaofei
  • Journal of Applied Physics, Vol. 121, Issue 18
  • DOI: 10.1063/1.4983075

Anomalies in magnetoelastic properties of DyFe 11.2 Nb 0.8 compound
journal, May 2015

  • Wang, J. L.; Md Din, M. F.; Kennedy, S. J.
  • Journal of Applied Physics, Vol. 117, Issue 17
  • DOI: 10.1063/1.4907614

Designed metamagnetism in CoMnGe 1 x P x
journal, May 2011


Giant Barocaloric Effect at the Spin Crossover Transition of a Molecular Crystal
journal, March 2019

  • Vallone, Steven P.; Tantillo, Anthony N.; dos Santos, António M.
  • Advanced Materials, Vol. 31, Issue 23
  • DOI: 10.1002/adma.201807334

Giant magneto-elastic coupling in a metallic helical metamagnet
text, January 2010


Materials with Giant Mechanocaloric Effects: Cooling by Strength
journal, December 2016


Magnetic phase transitions and magnetocaloric effect of MnCoGe1−xSix
journal, December 2014


Interstitial-nitrogen effect on phase transition and magnetocaloric effect in Mn(As,Si) (invited)
journal, May 2010

  • Cui, W. B.; Lv, X. K.; Yang, F.
  • Journal of Applied Physics, Vol. 107, Issue 9
  • DOI: 10.1063/1.3358617

The Martensitic Transition and Magnetocaloric Effect of Mn-Poor MnCoGe Melt-Spun Ribbons
journal, November 2015


Multisite Exchange-Enhanced Barocaloric Response in Mn 3 NiN
journal, November 2018


Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe 49 Rh 51
journal, October 2015

  • Stern-Taulats, Enric; Gràcia-Condal, Adrià; Planes, Antoni
  • Applied Physics Letters, Vol. 107, Issue 15
  • DOI: 10.1063/1.4933409

Large reversible entropy change at the inverse magnetocaloric effect in Ni-Co-Mn-Ga-In magnetic shape memory alloys
journal, June 2013

  • Emre, Baris; Yüce, Süheyla; Stern-Taulats, Enric
  • Journal of Applied Physics, Vol. 113, Issue 21
  • DOI: 10.1063/1.4808340

The magneto-structural transition in Mn 1− x Fe x CoGe
journal, March 2016


Multicaloric materials and effects
journal, April 2018

  • Stern-Taulats, Enric; Castán, Teresa; Mañosa, Lluís
  • MRS Bulletin, Vol. 43, Issue 4
  • DOI: 10.1557/mrs.2018.72

Phase Transitions and Magnetocaloric Properties in MnCo 1− x Zr x Ge Compounds
journal, January 2017

  • Aryal, Anil; Quetz, Abdiel; Pandey, Sudip
  • Advances in Condensed Matter Physics, Vol. 2017
  • DOI: 10.1155/2017/2683789

FIRST-ORDER MAGNETIC PHASE TRANSITIONS AND COLOSSAL MAGNETORESISTANCE: JOINING MANGANESE PEROVSKITES AND MnAs
journal, June 2004


Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound
journal, September 2011

  • Mañosa, Lluís; González-Alonso, David; Planes, Antoni
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1606

Direct Evidence for Multiferroic Magnetoelectric Coupling in 0.9 BiFeO 3 0.1 BaTiO 3
journal, December 2008


Giant low field magnetocaloric effect and magnetostructural coupling in MnCoGe 1-x In x around room temperature
journal, July 2018


Barocaloric and magnetocaloric effects in (MnNiSi) 1− x (FeCoGe) x
journal, January 2018

  • Samanta, Tapas; Lloveras, Pol; Us Saleheen, Ahmad
  • Applied Physics Letters, Vol. 112, Issue 2
  • DOI: 10.1063/1.5011743

Tuning structural instability toward enhanced magnetocaloric effect around room temperature in MnCo1−xZnxGe
journal, December 2014

  • Choudhury, D.; Suzuki, T.; Tokura, Y.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep07544

Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)
journal, March 2013


Specific Heat of MnCoGe Type Compounds at Martensitic Phase Transitions
journal, June 2012


The magnetocaloric effect and critical behaviour of the Mn 0.94 Ti 0.06 CoGe alloy
journal, December 2012


On the magnetostructural transition in MnCoGeB alloy ribbons
journal, September 2015

  • Quintana-Nedelcos, A.; Sánchez Llamazares, J. L.; Flores-Zuñiga, H.
  • Journal of Alloys and Compounds, Vol. 644
  • DOI: 10.1016/j.jallcom.2015.05.008

Giant magnetocaloric effects near room temperature in Mn 1 − x Cu x CoGe
journal, December 2012

  • Samanta, Tapas; Dubenko, Igor; Quetz, Abdiel
  • Applied Physics Letters, Vol. 101, Issue 24
  • DOI: 10.1063/1.4770379

Field-Induced Martensitic Transformation in New Ferromagnetic Shape Memory Compound Mn 1.07 Co 0.92 Ge
journal, December 2004

  • Koyama, Keiichi; Sakai, Masanari; Kanomata, Takeshi
  • Japanese Journal of Applied Physics, Vol. 43, Issue 12
  • DOI: 10.1143/jjap.43.8036

Caloric materials near ferroic phase transitions
journalarticle, January 2014


Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe 1− x Al x compounds
journal, January 2014


First-order magneto-structural transition and magnetocaloric effect in Mn(Co0.96Fe0.04)Ge
journal, February 2017


Magnetocaloric effect in MnFe(P,Si,Ge) compounds
journal, April 2006

  • Cam Thanh, D. T.; Brück, E.; Tegus, O.
  • Journal of Applied Physics, Vol. 99, Issue 8
  • DOI: 10.1063/1.2170589

Caloric materials near ferroic phase transitions
journal, April 2014

  • Moya, X.; Kar-Narayan, S.; Mathur, N. D.
  • Nature Materials, Vol. 13, Issue 5
  • DOI: 10.1038/nmat3951

A high-temperature X-ray study of the displacive phase transition in MnCoGe
journal, April 1975

  • Jeitschko, W.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 31, Issue 4
  • DOI: 10.1107/s0567740875004773

Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate
journal, November 2015

  • Lloveras, P.; Stern-Taulats, E.; Barrio, M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9801

Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol.
text, January 2019

  • Lloveras, P.; Aznar, A.; Barrio, M.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.38470

Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol
journal, April 2019


Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2
journal, August 2012

  • Yuce, Suheyla; Barrio, Maria; Emre, Baris
  • Applied Physics Letters, Vol. 101, Issue 7
  • DOI: 10.1063/1.4745920

Giant magnetocaloric effect in MnCoGe with minimal Ga substitution
journal, August 2015


Magnetic-field-induced strain in Ni2MnGa shape-memory alloy (abstract)
journal, April 1997

  • Ullakko, K.; Huang, J. K.; Kanter, C.
  • Journal of Applied Physics, Vol. 81, Issue 8
  • DOI: 10.1063/1.364556

A review on Mn based materials for magnetic refrigeration: Structure and properties
journal, August 2008


Large low-field magnetocaloric effect in MnCo0.95Ge1.14 alloy
journal, September 2007


Large magnetocaloric effects over a wide temperature range in MnCo 1−x Zn x Ge
journal, May 2013

  • Samanta, Tapas; Dubenko, Igor; Quetz, Abdiel
  • Journal of Applied Physics, Vol. 113, Issue 17
  • DOI: 10.1063/1.4798339

Thermal-history dependent magnetoelastic transition in (Mn,Fe) 2 (P,Si)
journal, July 2015

  • Miao, X. F.; Caron, L.; Gercsi, Z.
  • Applied Physics Letters, Vol. 107, Issue 4
  • DOI: 10.1063/1.4927285

Magneto-volume effect of MnCo1−xGe(0⩽x⩽0.2)
journal, February 1995


Hydrostatic pressure-tuned magnetostructural transition and magnetocaloric effect in Mn-Co-Ge-In compounds
journal, May 2018

  • Liang, F. X.; Shen, F. R.; Liu, Y.
  • AIP Advances, Vol. 8, Issue 5
  • DOI: 10.1063/1.5006688

Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn 1-x CoGe alloys
journal, July 2010


Large barocaloric effects at low pressures in natural rubber
text, January 2017


Phase diagram and magnetocaloric effects in aluminum doped MnNiGe alloys
journal, October 2013

  • Quetz, Abdiel; Samanta, Tapas; Dubenko, Igor
  • Journal of Applied Physics, Vol. 114, Issue 15
  • DOI: 10.1063/1.4826260

Realisation of magnetostructural coupling and a large magnetocaloric effect in the MnCoGe 1+x system
journal, October 2017

  • Hassan, Najam ul; Chen, Fenghua; Zhang, Mingang
  • Journal of Magnetism and Magnetic Materials, Vol. 439
  • DOI: 10.1016/j.jmmm.2017.05.021

Microscopic mechanism of the giant magnetocaloric effect in MnCoGe alloys probed by x-ray magnetic circular dichroism
journal, March 2016

  • Guillou, F.; Wilhelm, F.; Tegus, O.
  • Applied Physics Letters, Vol. 108, Issue 12
  • DOI: 10.1063/1.4944643

Ti substitution for Mn in MnCoGe – The magnetism of Mn0.9Ti0.1CoGe
journal, November 2013


Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy
journal, April 2010

  • Mañosa, Lluís; González-Alonso, David; Planes, Antoni
  • Nature Materials, Vol. 9, Issue 6
  • DOI: 10.1038/nmat2731

Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN
journal, October 2014

  • Matsunami, Daichi; Fujita, Asaya; Takenaka, Koshi
  • Nature Materials, Vol. 14, Issue 1
  • DOI: 10.1038/nmat4117

Giant room-temperature barocaloric effects in PDMS rubber at low pressures
journal, February 2018


Multicaloric materials and effects
text, January 2018

  • Stern-Taulats, E.; Castán, T.; Mañosa, L.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.25043

Barocaloric effect in metamagnetic shape memory alloys: Barocaloric effect in memory alloys
journal, March 2014

  • Mañosa, Lluís; Stern-Taulats, Enric; Planes, Antoni
  • physica status solidi (b), Vol. 251, Issue 10
  • DOI: 10.1002/pssb.201350371

(Magneto)caloric refrigeration: is there light at the end of the tunnel?
journal, August 2016

  • Pecharsky, Vitalij K.; Cui, Jun; Johnson, Duane D.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, Issue 2074
  • DOI: 10.1098/rsta.2015.0305

Mn 1-x Fe x CoGe: A strongly correlated metal in the proximity of a noncollinear ferromagnetic state
journal, July 2013

  • Samanta, Tapas; Dubenko, Igor; Quetz, Abdiel
  • Applied Physics Letters, Vol. 103, Issue 4
  • DOI: 10.1063/1.4816381

Giant barocaloric effects over a wide temperature range in superionic conductor AgI
journal, November 2017


Large room-temperature magnetocaloric effect in MnCoGe 0.9 Cu 0.1 alloy
journal, November 2017


Inverse barocaloric effects in ferroelectric BaTiO$_3$ ceramics
text, January 2016

  • Stern-Taulats, E.; Lloveras, P.; Barrio, M.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.4908

Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures
journal, June 2017

  • Bermúdez-García, Juan M.; Sánchez-Andújar, Manuel; Castro-García, Socorro
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15715

Giant Magnetoelastic Coupling in a Metallic Helical Metamagnet
journal, June 2010


Large Inverse Magnetocaloric Effects and Giant Magnetoresistance in Ni-Mn-Cr-Sn Heusler Alloys
journal, January 2017


Giant barocaloric effects over a wide temperature range in superionic conductor AgI.
text, January 2017

  • Aznar, Araceli; Lloveras, Pol; Romanini, Michela
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.18079

Magnetic-field-induced shape recovery by reverse phase transformation
journal, February 2006


Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides
journal, May 1975


Effect of annealing on the structure and magnetic entropy change of Mn1.1Fe0.9P0.8Ge0.2 ribbons
journal, August 2014


Magnetostructural phase transitions and magnetocaloric effects in MnNiGe 1−x Al x
journal, January 2012

  • Samanta, Tapas; Dubenko, Igor; Quetz, Abdiel
  • Applied Physics Letters, Vol. 100, Issue 5
  • DOI: 10.1063/1.3681798

Inverse barocaloric effects in ferroelectric BaTiO 3 ceramics
journal, September 2016

  • Stern-Taulats, E.; Lloveras, P.; Barrio, M.
  • APL Materials, Vol. 4, Issue 9
  • DOI: 10.1063/1.4961598

Works referencing / citing this record:

Reversible and irreversible colossal barocaloric effects in plastic crystals
text, January 2020

  • Aznar, A.; Lloveras, P.; Barrio, M.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.48384