DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal conductivity of two-dimensional disordered fibrous materials defined by interfiber thermal contact conductance and intrinsic conductivity of fibers

Abstract

A general framework for the theoretical analysis and numerical calculations of the effective thermal conductivity of two-dimensional homogeneous and isotropic disordered fibrous materials is developed in this work based on the model of random contacts between soft-core spherocylinders. The analysis accounts for the interfiber contact conductance and intrinsic conductivity of fibers and is performed in a wide space of governing parameters that includes the fiber aspect ratio, Biot number calculated for a single thermal contact between fibers, and material density ranging from values corresponding to the percolation threshold up to those characteristic of dense fiber networks. For dense networks, exact theoretical equations for the thermal conductivity of materials composed of spherocylinders with an arbitrary aspect ratio and Biot number are derived. The effect of the intrinsic conductivity of fibers on the thermal transport in fibrous materials is found to depend on the density of contacts and can be significant in sufficiently dense fiber networks even if the Biot number for a single thermal contact is small. Semiempirical corrections to the theoretical equations are derived for small and moderate fiber densities. The power law exponent describing the approximate dependence of the conductivity on the density parameter is found to vary frommore » values close to 1 up to values exceeding 2 when evaluated within different finite ranges of the density parameter. This finding explains the variability of scaling laws for thermal conductivity of fibrous materials suggested in the literature based on numerical simulations performed in different regions of the space of material parameters.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]
  1. Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Mechanical Engineering
  2. Univ. of Virginia, Charlottesville, VA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Univ. of Virginia, Charlottesville, VA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); National Aeronautics and Space Administration (NASA); National Science Foundation (NSF)
OSTI Identifier:
1608704
Alternate Identifier(s):
OSTI ID: 1598737
Grant/Contract Number:  
EE0008195
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 127; Journal Issue: 6; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Volkov, Alexey N., and Zhigilei, Leonid V. Thermal conductivity of two-dimensional disordered fibrous materials defined by interfiber thermal contact conductance and intrinsic conductivity of fibers. United States: N. p., 2020. Web. doi:10.1063/1.5136238.
Volkov, Alexey N., & Zhigilei, Leonid V. Thermal conductivity of two-dimensional disordered fibrous materials defined by interfiber thermal contact conductance and intrinsic conductivity of fibers. United States. https://doi.org/10.1063/1.5136238
Volkov, Alexey N., and Zhigilei, Leonid V. Mon . "Thermal conductivity of two-dimensional disordered fibrous materials defined by interfiber thermal contact conductance and intrinsic conductivity of fibers". United States. https://doi.org/10.1063/1.5136238. https://www.osti.gov/servlets/purl/1608704.
@article{osti_1608704,
title = {Thermal conductivity of two-dimensional disordered fibrous materials defined by interfiber thermal contact conductance and intrinsic conductivity of fibers},
author = {Volkov, Alexey N. and Zhigilei, Leonid V.},
abstractNote = {A general framework for the theoretical analysis and numerical calculations of the effective thermal conductivity of two-dimensional homogeneous and isotropic disordered fibrous materials is developed in this work based on the model of random contacts between soft-core spherocylinders. The analysis accounts for the interfiber contact conductance and intrinsic conductivity of fibers and is performed in a wide space of governing parameters that includes the fiber aspect ratio, Biot number calculated for a single thermal contact between fibers, and material density ranging from values corresponding to the percolation threshold up to those characteristic of dense fiber networks. For dense networks, exact theoretical equations for the thermal conductivity of materials composed of spherocylinders with an arbitrary aspect ratio and Biot number are derived. The effect of the intrinsic conductivity of fibers on the thermal transport in fibrous materials is found to depend on the density of contacts and can be significant in sufficiently dense fiber networks even if the Biot number for a single thermal contact is small. Semiempirical corrections to the theoretical equations are derived for small and moderate fiber densities. The power law exponent describing the approximate dependence of the conductivity on the density parameter is found to vary from values close to 1 up to values exceeding 2 when evaluated within different finite ranges of the density parameter. This finding explains the variability of scaling laws for thermal conductivity of fibrous materials suggested in the literature based on numerical simulations performed in different regions of the space of material parameters.},
doi = {10.1063/1.5136238},
journal = {Journal of Applied Physics},
number = 6,
volume = 127,
place = {United States},
year = {Mon Feb 10 00:00:00 EST 2020},
month = {Mon Feb 10 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates
journal, May 2007

  • Pop, Eric; Mann, David A.; Goodson, Kenneth E.
  • Journal of Applied Physics, Vol. 101, Issue 9
  • DOI: 10.1063/1.2717855

Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature
journal, September 2005

  • Zhang, Gang; Li, Baowen
  • The Journal of Chemical Physics, Vol. 123, Issue 11
  • DOI: 10.1063/1.2036967

Upscaling the diffusion equations in particulate media made of highly conductive particles. I. Theoretical aspects
journal, January 2008


High-Strength and Multifunctional Macroscopic Fabric of Single-Walled Carbon Nanotubes
journal, May 2007


Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling
journal, September 2006


Upscaling the diffusion equations in particulate media made of highly conductive particles. II. Application to fibrous materials
journal, January 2008


Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks
journal, September 2006

  • Hecht, David; Hu, Liangbing; Grüner, George
  • Applied Physics Letters, Vol. 89, Issue 13
  • DOI: 10.1063/1.2356999

Thermal conductance of carbon nanotube contacts: Molecular dynamics simulations and general description of the contact conductance
journal, July 2016


Measuring the Thermal Conductivity of a Single Carbon Nanotube
journal, August 2005


Directly Synthesized Strong, Highly Conducting, Transparent Single-Walled Carbon Nanotube Films
journal, August 2007

  • Ma, Wenjun; Song, Li; Yang, Rong
  • Nano Letters, Vol. 7, Issue 8
  • DOI: 10.1021/nl070915c

Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations
journal, October 2007


Physics of carbon nanotubes
journal, January 1995


Length Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes
journal, May 2007


Alignment Control of Carbon Nanotube Forest from Random to Nearly Perfectly Aligned by Utilizing the Crowding Effect
journal, June 2012

  • Xu, Ming; Futaba, Don N.; Yumura, Motoo
  • ACS Nano, Vol. 6, Issue 7
  • DOI: 10.1021/nn300142j

Mesoscopic Interaction Potential for Carbon Nanotubes of Arbitrary Length and Orientation
journal, October 2009

  • Volkov, Alexey N.; Zhigilei, Leonid V.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 12
  • DOI: 10.1021/jp906142h

Nanoengineering Heat Transfer Performance at Carbon Nanotube Interfaces
journal, August 2009


Thermal conductivity of carbon nanotubes
journal, June 2000


Excluded volume and its relation to the onset of percolation
journal, October 1984

  • Balberg, I.; Anderson, C. H.; Alexander, S.
  • Physical Review B, Vol. 30, Issue 7, p. 3933-3943
  • DOI: 10.1103/PhysRevB.30.3933

Thermal Transport Measurements of Individual Multiwalled Nanotubes
journal, October 2001


Upper bound to the thermal conductivity of carbon nanotube pellets
journal, April 2009

  • Chalopin, Yann; Volz, Sebastian; Mingo, Natalio
  • Journal of Applied Physics, Vol. 105, Issue 8
  • DOI: 10.1063/1.3088924

Structural Stability of Carbon Nanotube Films: The Role of Bending Buckling
journal, October 2010

  • Volkov, Alexey N.; Zhigilei, Leonid V.
  • ACS Nano, Vol. 4, Issue 10
  • DOI: 10.1021/nn1015902

Performance of carbon nanotube-dispersed thin-film transistors
journal, October 2006

  • Kumar, S.; Blanchet, G. B.; Hybertsen, M. S.
  • Applied Physics Letters, Vol. 89, Issue 14
  • DOI: 10.1063/1.2357852

Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks
journal, October 1983


Ultralight Multiwalled Carbon Nanotube Aerogel
journal, November 2010

  • Zou, Jianhua; Liu, Jianhua; Karakoti, Ajay Singh
  • ACS Nano, Vol. 4, Issue 12
  • DOI: 10.1021/nn102246a

Percolation and conductivity: A computer study. I
journal, August 1974


Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature
journal, January 2006

  • Pop, Eric; Mann, David; Wang, Qian
  • Nano Letters, Vol. 6, Issue 1
  • DOI: 10.1021/nl052145f

Thermal conductivity model for nanofiber networks
journal, February 2018

  • Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun
  • Journal of Applied Physics, Vol. 123, Issue 8
  • DOI: 10.1063/1.5008582

Molecular dynamics simulations of thermal conductivity of carbon nanotubes: Resolving the effects of computational parameters
journal, March 2014


Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays
journal, November 2006

  • Ivanov, Ilia; Puretzky, Alexander; Eres, Gyula
  • Applied Physics Letters, Vol. 89, Issue 22
  • DOI: 10.1063/1.2397008

Modeling carrier density dependent charge transport in semiconducting carbon nanotube networks
journal, September 2017


Role of thermal boundary resistance on the heat flow in carbon-nanotube composites
journal, June 2004

  • Shenogin, Sergei; Xue, Liping; Ozisik, Rahmi
  • Journal of Applied Physics, Vol. 95, Issue 12
  • DOI: 10.1063/1.1736328

Percolation in Transparent and Conducting Carbon Nanotube Networks
journal, December 2004

  • Hu, L.; Hecht, D. S.; Grüner, G.
  • Nano Letters, Vol. 4, Issue 12, p. 2513-2517
  • DOI: 10.1021/nl048435y

Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects
journal, January 2009


Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications
journal, January 2009

  • Lee, Seung Woo; Kim, Byeong-Su; Chen, Shuo
  • Journal of the American Chemical Society, Vol. 131, Issue 2
  • DOI: 10.1021/ja807059k

Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites
journal, October 2004


Turning Carbon Nanotubes from Exceptional Heat Conductors into Insulators
journal, March 2009


Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method
journal, March 2009


Conductivity of a suspension of nanowires in a weakly conducting medium
journal, April 2006


Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes
journal, September 2007

  • Li, J.; Ma, P. C.; Chow, W. S.
  • Advanced Functional Materials, Vol. 17, Issue 16
  • DOI: 10.1002/adfm.200700065

Heat conduction in carbon nanotube materials: Strong effect of intrinsic thermal conductivity of carbon nanotubes
journal, July 2012

  • Volkov, Alexey N.; Zhigilei, Leonid V.
  • Applied Physics Letters, Vol. 101, Issue 4
  • DOI: 10.1063/1.4737903

Thermal and Electrical Transport in Ultralow Density Single-Walled Carbon Nanotube Networks
journal, April 2013

  • Zhang, Ke Jia; Yadav, Abhishek; Kim, Kyu Hun
  • Advanced Materials, Vol. 25, Issue 21
  • DOI: 10.1002/adma.201300059

Scaling Laws and Mesoscopic Modeling of Thermal Conductivity in Carbon Nanotube Materials
journal, May 2010


Thermal Boundary Conductance between Multi-Walled Carbon Nanotubes
journal, January 2012

  • Yamada, Yutaka; Nishiyama, Takashi; Yasuhara, Takahiro
  • Journal of Thermal Science and Technology, Vol. 7, Issue 1
  • DOI: 10.1299/jtst.7.190

Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity
journal, March 2005


Modelling microstructure effects on the conduction in fibrous materials with fibre–fibre interface barriers
journal, March 2008

  • Vassal, J-P; Orgéas, L.; Favier, D.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 16, Issue 3
  • DOI: 10.1088/0965-0393/16/3/035007

Percolation and spatial correlations in a two-dimensional continuum deposition model
journal, May 2000


Carbon nanotube thermal transport: Ballistic to diffusive
journal, March 2006

  • Wang, Jian; Wang, Jian-Sheng
  • Applied Physics Letters, Vol. 88, Issue 11
  • DOI: 10.1063/1.2185727

Stochastic Modeling of the Bulk Thermal Conductivity for Dense Carbon Nanotube Networks
conference, July 2010

  • Ashtekar, Nikhil A.; Jack, David A.
  • ASME 2009 International Mechanical Engineering Congress and Exposition, Volume 12: Micro and Nano Systems, Parts A and B
  • DOI: 10.1115/IMECE2009-11282

Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films
journal, July 2000

  • Hone, J.; Llaguno, M. C.; Nemes, N. M.
  • Applied Physics Letters, Vol. 77, Issue 5
  • DOI: 10.1063/1.127079

The Effects of Shape on the Interaction of Colloidal Particles
journal, May 1949


Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials
journal, March 2012

  • Volkov, Alexey N.; Shiga, Takuma; Nicholson, David
  • Journal of Applied Physics, Vol. 111, Issue 5
  • DOI: 10.1063/1.3687943

Continuum Percolation of Rods
journal, April 1985


Films and fibers of oriented single wall nanotubes
journal, August 2002


Thermal conductivity of single-walled carbon nanotubes
journal, January 1999


Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials
journal, April 2004

  • Berhan, L.; Yi, Y. B.; Sastry, A. M.
  • Journal of Applied Physics, Vol. 95, Issue 8
  • DOI: 10.1063/1.1687995

Unusually High Thermal Conductivity of Carbon Nanotubes
journal, May 2000


Anisotropic Heat Transfer of Single-Walled Carbon Nanotubes
journal, January 2006

  • Maruyama, Shigeo; Igarashi, Yasuhiro; Taniguchi, Yuki
  • Journal of Thermal Science and Technology, Vol. 1, Issue 2
  • DOI: 10.1299/jtst.1.138

Inter-tube thermal conductance in carbon nanotubes arrays and bundles: Effects of contact area and pressure
journal, June 2012

  • Evans, William J.; Shen, Meng; Keblinski, Pawel
  • Applied Physics Letters, Vol. 100, Issue 26
  • DOI: 10.1063/1.4732100

Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites
journal, January 2006


Random networks of carbon nanotubes as an electronic material
journal, March 2003

  • Snow, E. S.; Novak, J. P.; Campbell, P. M.
  • Applied Physics Letters, Vol. 82, Issue 13, p. 2145-2147
  • DOI: 10.1063/1.1564291

High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water
journal, February 2003

  • Islam, M. F.; Rojas, E.; Bergey, D. M.
  • Nano Letters, Vol. 3, Issue 2, p. 269-273
  • DOI: 10.1021/nl025924u

Single-Wall Carbon Nanotube Films
journal, January 2003

  • Sreekumar, T. V.; Liu, Tao; Kumar, Satish
  • Chemistry of Materials, Vol. 15, Issue 1
  • DOI: 10.1021/cm020367y

Large-scale purification of single-wall carbon nanotubes: process, product, and characterization
journal, July 1998

  • Rinzler, A. G.; Liu, J.; Dai, H.
  • Applied Physics A: Materials Science & Processing, Vol. 67, Issue 1, p. 29-37
  • DOI: 10.1007/s003390050734

Strain controlled thermomutability of single-walled carbon nanotubes
journal, April 2009


Contact resistance in percolating networks
journal, May 2004


From percolating to dense random stick networks: Conductivity model investigation
journal, October 2012


Growth, percolation, and correlations in disordered fiber networks
journal, April 1997

  • Provatas, N.; Haataja, M.; Seppälä, E.
  • Journal of Statistical Physics, Vol. 87, Issue 1-2
  • DOI: 10.1007/BF02181493

Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes
journal, April 2008

  • Shiomi, Junichiro; Maruyama, Shigeo
  • Japanese Journal of Applied Physics, Vol. 47, Issue 4
  • DOI: 10.1143/JJAP.47.2005

Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite
journal, January 2007


Thermal conductivity of single-walled carbon nanotubes
journal, June 1999


Percolation and Conduction
journal, October 1973


Thermal conductivity of multiwalled carbon nanotubes
journal, October 2002


Thermal and electrical transport in multi-walled carbon nanotubes
journal, August 2004


Effect of percolation on thermal transport in nanotube composites
journal, March 2007

  • Kumar, S.; Alam, M. A.; Murthy, J. Y.
  • Applied Physics Letters, Vol. 90, Issue 10
  • DOI: 10.1063/1.2712428

Crystalline Ropes of Metallic Carbon Nanotubes
journal, July 1996


Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models
journal, April 2007