DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular Layer Etching of Metalcone Films Using Lithium Organic Salts and Trimethylaluminum

Abstract

Advances in semiconductor device manufacturing are limited by our ability to precisely add and remove thin layers of material in multistep fabrication processes. Recent reports on atomic layer etching (ALE) have provided the means for the precise removal of inorganic thin films deposited by atomic layer deposition (ALD), opening new avenues for nanoscale device design. Here, we report on a new technique for the precise removal of metal organic thin films deposited by molecular layer deposition (MLD), which we term molecular layer etching. This etching process employs sequential exposures of lithium organic salt (LOS) and trimethylaluminum (TMA) precursors to produce self-limiting etching behavior. We employ quartz crystal microbalance experiments to demonstrate (i) etching of alucone films preloaded with LOS upon TMA exposures and (ii) layer-by-layer etching of alucone films using alternating exposures of LOS and TMA. We also identify the selectivity of these etching mechanisms. We probe the mechanism for the layer-by-layer etching of alucone using a quartz crystal microbalance and Fourier transform infrared spectroscopy and identify that the etching proceeds via heterolytic cleaving of Al-O bonds in alucone upon LOS exposure followed by methylation to produce volatile species upon TMA exposure. The etching process results in the removal ofmore » 0.4 nm/cycle of alucone at 160 °C and up to 3.6 nm/cycle of alucone at 266 °C in ex situ etching experiments on silicon wafers. This halogen-free etching process enables etching of MLD films and provides new fabrication pathways for the control of material geometries at the nanoscale.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2];  [2];  [2]; ORCiD logo [2]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Applied Materials Division; Univ. of Missouri, Columbia, MO (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Applied Materials Division
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1606527
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 32; Journal Issue: 3; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Etching; Thin films; Absorption; Precursors; Atomic layer deposition

Citation Formats

Young, Matthias J., Choudhury, Devika, Letourneau, Steven, Mane, Anil, Yanguas-Gil, Angel, and Elam, Jeffrey W. Molecular Layer Etching of Metalcone Films Using Lithium Organic Salts and Trimethylaluminum. United States: N. p., 2020. Web. doi:10.1021/acs.chemmater.9b03627.
Young, Matthias J., Choudhury, Devika, Letourneau, Steven, Mane, Anil, Yanguas-Gil, Angel, & Elam, Jeffrey W. Molecular Layer Etching of Metalcone Films Using Lithium Organic Salts and Trimethylaluminum. United States. https://doi.org/10.1021/acs.chemmater.9b03627
Young, Matthias J., Choudhury, Devika, Letourneau, Steven, Mane, Anil, Yanguas-Gil, Angel, and Elam, Jeffrey W. Thu . "Molecular Layer Etching of Metalcone Films Using Lithium Organic Salts and Trimethylaluminum". United States. https://doi.org/10.1021/acs.chemmater.9b03627. https://www.osti.gov/servlets/purl/1606527.
@article{osti_1606527,
title = {Molecular Layer Etching of Metalcone Films Using Lithium Organic Salts and Trimethylaluminum},
author = {Young, Matthias J. and Choudhury, Devika and Letourneau, Steven and Mane, Anil and Yanguas-Gil, Angel and Elam, Jeffrey W.},
abstractNote = {Advances in semiconductor device manufacturing are limited by our ability to precisely add and remove thin layers of material in multistep fabrication processes. Recent reports on atomic layer etching (ALE) have provided the means for the precise removal of inorganic thin films deposited by atomic layer deposition (ALD), opening new avenues for nanoscale device design. Here, we report on a new technique for the precise removal of metal organic thin films deposited by molecular layer deposition (MLD), which we term molecular layer etching. This etching process employs sequential exposures of lithium organic salt (LOS) and trimethylaluminum (TMA) precursors to produce self-limiting etching behavior. We employ quartz crystal microbalance experiments to demonstrate (i) etching of alucone films preloaded with LOS upon TMA exposures and (ii) layer-by-layer etching of alucone films using alternating exposures of LOS and TMA. We also identify the selectivity of these etching mechanisms. We probe the mechanism for the layer-by-layer etching of alucone using a quartz crystal microbalance and Fourier transform infrared spectroscopy and identify that the etching proceeds via heterolytic cleaving of Al-O bonds in alucone upon LOS exposure followed by methylation to produce volatile species upon TMA exposure. The etching process results in the removal of 0.4 nm/cycle of alucone at 160 °C and up to 3.6 nm/cycle of alucone at 266 °C in ex situ etching experiments on silicon wafers. This halogen-free etching process enables etching of MLD films and provides new fabrication pathways for the control of material geometries at the nanoscale.},
doi = {10.1021/acs.chemmater.9b03627},
journal = {Chemistry of Materials},
number = 3,
volume = 32,
place = {United States},
year = {Thu Jan 02 00:00:00 EST 2020},
month = {Thu Jan 02 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.
journal, September 2006


Impact of the vertical SOI 'DELTA' structure on planar device technology
journal, June 1991

  • Hisamoto, D.; Kaga, T.; Takeda, E.
  • IEEE Transactions on Electron Devices, Vol. 38, Issue 6
  • DOI: 10.1109/16.81634

High-performance fully depleted silicon nanowire (diameter /spl les/ 5 nm) gate-all-around CMOS devices
journal, May 2006


Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Mechanism of Thermal Al 2 O 3 Atomic Layer Etching Using Sequential Reactions with Sn(acac) 2 and HF
journal, May 2015


Atomic Layer Etching of AlF 3 Using Sequential, Self-Limiting Thermal Reactions with Sn(acac) 2 and Hydrogen Fluoride
journal, November 2015

  • Lee, Younghee; DuMont, Jaime W.; George, Steven M.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 45
  • DOI: 10.1021/acs.jpcc.5b07236

Trimethylaluminum as the Metal Precursor for the Atomic Layer Etching of Al 2 O 3 Using Sequential, Self-Limiting Thermal Reactions
journal, April 2016


Atomic Layer Deposition of AlF 3 Using Trimethylaluminum and Hydrogen Fluoride
journal, June 2015

  • Lee, Younghee; DuMont, Jaime W.; Cavanagh, Andrew S.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 25
  • DOI: 10.1021/acs.jpcc.5b02625

Thermal Atomic Layer Etching of Silicon Using O 2 , HF, and Al(CH 3 ) 3 as the Reactants
journal, November 2018


Thermal Atomic Layer Etching of SiO 2 by a “Conversion-Etch” Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride
journal, March 2017

  • DuMont, Jaime W.; Marquardt, Amy E.; Cano, Austin M.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 11
  • DOI: 10.1021/acsami.7b01259

Atomic Layer Etching of HfO 2 Using Sequential, Self-Limiting Thermal Reactions with Sn(acac) 2 and HF
journal, January 2015

  • Lee, Younghee; DuMont, Jaime W.; George, Steven M.
  • ECS Journal of Solid State Science and Technology, Vol. 4, Issue 6
  • DOI: 10.1149/2.0041506jss

Thermal Selective Vapor Etching of TiO 2 : Chemical Vapor Etching via WF 6 and Self-Limiting Atomic Layer Etching Using WF 6 and BCl 3
journal, August 2017


WO 3 and W Thermal Atomic Layer Etching Using “Conversion-Fluorination” and “Oxidation-Conversion-Fluorination” Mechanisms
journal, April 2017

  • Johnson, Nicholas R.; George, Steven M.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 39
  • DOI: 10.1021/acsami.7b09161

Selectivity in Thermal Atomic Layer Etching Using Sequential, Self-Limiting Fluorination and Ligand-Exchange Reactions
journal, October 2016


Polymer thin films prepared by vapor deposition
journal, January 1994


Surface Chemistry for Molecular Layer Deposition of Organic and Hybrid Organic−Inorganic Polymers
journal, April 2009

  • George, Steven M.; Yoon, Byunghoon; Dameron, Arrelaine A.
  • Accounts of Chemical Research, Vol. 42, Issue 4
  • DOI: 10.1021/ar800105q

Polymer films formed with monolayer growth steps by molecular layer deposition
journal, July 1991

  • Yoshimura, Tetsuzo; Tatsuura, Satoshi; Sotoyama, Wataru
  • Applied Physics Letters, Vol. 59, Issue 4
  • DOI: 10.1063/1.105415

Molecular Layer Deposition of Alucone Polymer Films Using Trimethylaluminum and Ethylene Glycol
journal, May 2008

  • Dameron, A. A.; Seghete, D.; Burton, B. B.
  • Chemistry of Materials, Vol. 20, Issue 10
  • DOI: 10.1021/cm7032977

Deposition of Organic- Inorganic Hybrid Materials by Atomic Layer Deposition
conference, January 2008

  • Nilsen, Ola; Klepper, Karina; Nielsen, Heidi
  • 214th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.2979975

Molecular Layer Deposition of Hybrid Organic-Inorganic Polymer Films using Diethylzinc and Ethylene Glycol
journal, June 2009

  • Yoon, Byunghoon; O'Patchen, Jennifer L.; Seghete, Dragos
  • Chemical Vapor Deposition, Vol. 15, Issue 4-6
  • DOI: 10.1002/cvde.200806756

Growth and Properties of Hybrid Organic-Inorganic Metalcone Films Using Molecular Layer Deposition Techniques
journal, September 2012

  • Lee, Byoung H.; Yoon, Byunghoon; Abdulagatov, Aziz I.
  • Advanced Functional Materials, Vol. 23, Issue 5
  • DOI: 10.1002/adfm.201200370

Alucone Alloys with Tunable Properties Using Alucone Molecular Layer Deposition and Al 2 O 3 Atomic Layer Deposition
journal, February 2012

  • Lee, Byoung H.; Yoon, Byunghoon; Anderson, Virginia R.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 5
  • DOI: 10.1021/jp209003h

Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition
journal, August 2002

  • Elam, J. W.; Groner, M. D.; George, S. M.
  • Review of Scientific Instruments, Vol. 73, Issue 8, p. 2981-2987
  • DOI: 10.1063/1.1490410

Quartz Crystal Microbalance Studies of Al 2 O 3 Atomic Layer Deposition Using Trimethylaluminum and Water at 125 °C
journal, January 2010

  • Wind, R. A.; George, S. M.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 3
  • DOI: 10.1021/jp9049268

Mechanistic Study of Lithium Aluminum Oxide Atomic Layer Deposition
journal, January 2013

  • Comstock, David J.; Elam, Jeffrey W.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 4
  • DOI: 10.1021/jp308828p

Vapor-Phase Atomic-Controllable Growth of Amorphous Li 2 S for High-Performance Lithium–Sulfur Batteries
journal, October 2014

  • Meng, Xiangbo; Comstock, David J.; Fister, Timothy T.
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn505480w

Atomic Layer Deposition of Metal Fluorides Using HF–Pyridine as the Fluorine Precursor
journal, March 2016


Acidity measurements on pyridines in tetrahydrofuran using lithiated silylamines
journal, August 1985

  • Fraser, Robert R.; Mansour, Tarek S.; Savard, Sylvain
  • The Journal of Organic Chemistry, Vol. 50, Issue 17
  • DOI: 10.1021/jo00217a050

Quantitative measure of .alpha.-silyl carbanion stabilization. The electron affinity of (trimethylsilyl)methyl radical
journal, December 1988

  • Wetzel, Donna M.; Brauman, John I.
  • Journal of the American Chemical Society, Vol. 110, Issue 25
  • DOI: 10.1021/ja00233a008

Hindered Brønsted bases as Lewis base catalysts
journal, January 2009

  • Tabassum, Sobia; Sereda, Oksana; Reddy, Peddiahgari Vasu Govardhana
  • Organic & Biomolecular Chemistry, Vol. 7, Issue 19
  • DOI: 10.1039/b908899g

Molecular Hybrid Structures by Atomic Layer Deposition - Deposition of Alq 3 , Znq 2 and Tiq 4 (q = 8-hydroxyquinoline)
journal, May 2013

  • Nilsen, Ola; Haug, Kristoffer Robin; Finstad, Terje
  • Chemical Vapor Deposition, Vol. 19, Issue 4-6
  • DOI: 10.1002/cvde.201207043

Atomic layer deposition of organic–inorganic hybrid materials based on saturated linear carboxylic acids
journal, January 2011

  • Klepper, Karina Barnholt; Nilsen, Ola; Hansen, Per-Anders
  • Dalton Transactions, Vol. 40, Issue 17
  • DOI: 10.1039/c0dt01716g

Nucleation and Growth during Al 2 O 3 Atomic Layer Deposition on Polymers
journal, November 2005

  • Wilson, C. A.; Grubbs, R. K.; George, S. M.
  • Chemistry of Materials, Vol. 17, Issue 23
  • DOI: 10.1021/cm050704d

Modulation of the Growth Per Cycle in Atomic Layer Deposition Using Reversible Surface Functionalization
journal, December 2013

  • Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.
  • Chemistry of Materials, Vol. 25, Issue 24
  • DOI: 10.1021/cm4029098

Tert-butyl alcohol—matrix i.r. spectra and vibrational assignment
journal, January 1978


A gas-phase Raman study of trimethylaluminium and trimethylboron monomers
journal, January 1971

  • O'Brien, R. J.; Ozin, G. A.
  • Journal of the Chemical Society A: Inorganic, Physical, Theoretical
  • DOI: 10.1039/J19710001136

Infrared matrix isolation spectroscopy of trimethylgallium, trimethylaluminium and triethylaluminium
journal, January 1984


Vibrational spectra of monomeric trimethylaluminium and trimethylgallium
journal, January 1991

  • Atiya, Ghalib A.; Grady, Andrew S.; Russell, Douglas K.
  • Spectrochimica Acta Part A: Molecular Spectroscopy, Vol. 47, Issue 3-4
  • DOI: 10.1016/0584-8539(91)80124-2

New Insight into the Mechanism of Sequential Infiltration Synthesis from Infrared Spectroscopy
journal, October 2014

  • Biswas, Mahua; Libera, Joseph A.; Darling, Seth B.
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm502427q

CH local modes in cyclobutene—I. FTIR studies 700–9000 cm−1
journal, January 1986

  • Baggott, J. E.; Clase, H. J.; Mills, I. M.
  • Spectrochimica Acta Part A: Molecular Spectroscopy, Vol. 42, Issue 2-3
  • DOI: 10.1016/0584-8539(86)80195-7

Slow Photoelectron Velocity-Map Imaging of the i -Methylvinoxide Anion
journal, October 2010

  • Yacovitch, Tara I.; Garand, Etienne; Neumark, Daniel M.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 42
  • DOI: 10.1021/jp101930b

Sequential Infiltration Synthesis of Electronic Materials: Group 13 Oxides via Metal Alkyl Precursors
journal, June 2019