DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly efficient and durable III–V semiconductor-catalyst photocathodes via a transparent protection layer

Abstract

Durable performance and high efficiency in solar-driven water splitting are great challenges not yet co-achieved in photoelectrochemical (PEC) cells. Although photovoltaic cells made from III–V semiconductors can achieve high optical–electrical conversion efficiency, their functional integration with electrocatalysts and operational lifetime remain great challenges. Herein, an ultra-thin TiN layer was used as a diffusion barrier on a buried junction n+p-GaInP2 photocathode, to enable elevated temperatures for subsequent catalyst growth of Ni5P4 as nano-islands without damaging the GaInP2 junction. The resulting PEC half-cell showed negligible absorption loss, with saturated photocurrent density and H2 evolution equivalent to the benchmark photocathode decorated with PtRu catalysts. High corrosion-resistant Ni5P4/TiN layers showed undiminished photocathode operation over 120 h, exceeding previous benchmarks. Etching to remove electrodeposited copper, an introduced contaminant, restored full performance, demonstrating operational ruggedness. The TiN layer expands the synthesis conditions and protects against corrosion for stable operation of III–V PEC devices, while the Ni5P4 catalyst replaces costly and scarce noble metal catalysts.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [3];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2];  [1]; ORCiD logo [3]
  1. Rutgers Univ., Piscataway, NJ (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Rutgers Univ., Piscataway, NJ (United States); Rutgers Univ., Piscataway, NJ (United States). Waksman Inst.
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rutgers Univ., Piscataway, NJ (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Program; USDOE; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Hydrogen Fuel Cell Technologies Office (HFTO)
OSTI Identifier:
1606303
Alternate Identifier(s):
OSTI ID: 1582482; OSTI ID: 1987332
Report Number(s):
NREL/JA-5900-74845
Journal ID: ISSN 2398-4902; MainId:13411;UUID:23f56b9d-90d4-e911-9c26-ac162d87dfe5;MainAdminID:1891; TRN: US2104492
Grant/Contract Number:  
AC36-08GO28308; EE0008083
Resource Type:
Accepted Manuscript
Journal Name:
Sustainable Energy & Fuels
Additional Journal Information:
Journal Volume: 4; Journal Issue: 3; Journal ID: ISSN 2398-4902
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; photocathodes; transparent protection layer; water photolysis; 08 HYDROGEN; photoelectrochemical water splitting; hydrogen production; photocathode; nickel phosphide; titanium nitride

Citation Formats

Hwang, Shinjae, Young, James L., Mow, Rachel, Laursen, Anders B., Li, Mengjun, Yang, Hongbin, Batson, Philip E., Greenblatt, Martha, Steiner, Myles A., Friedman, Daniel, Deutsch, Todd G., Garfunkel, Eric, and Dismukes, G. Charles. Highly efficient and durable III–V semiconductor-catalyst photocathodes via a transparent protection layer. United States: N. p., 2020. Web. doi:10.1039/c9se01264h.
Hwang, Shinjae, Young, James L., Mow, Rachel, Laursen, Anders B., Li, Mengjun, Yang, Hongbin, Batson, Philip E., Greenblatt, Martha, Steiner, Myles A., Friedman, Daniel, Deutsch, Todd G., Garfunkel, Eric, & Dismukes, G. Charles. Highly efficient and durable III–V semiconductor-catalyst photocathodes via a transparent protection layer. United States. https://doi.org/10.1039/c9se01264h
Hwang, Shinjae, Young, James L., Mow, Rachel, Laursen, Anders B., Li, Mengjun, Yang, Hongbin, Batson, Philip E., Greenblatt, Martha, Steiner, Myles A., Friedman, Daniel, Deutsch, Todd G., Garfunkel, Eric, and Dismukes, G. Charles. Fri . "Highly efficient and durable III–V semiconductor-catalyst photocathodes via a transparent protection layer". United States. https://doi.org/10.1039/c9se01264h. https://www.osti.gov/servlets/purl/1606303.
@article{osti_1606303,
title = {Highly efficient and durable III–V semiconductor-catalyst photocathodes via a transparent protection layer},
author = {Hwang, Shinjae and Young, James L. and Mow, Rachel and Laursen, Anders B. and Li, Mengjun and Yang, Hongbin and Batson, Philip E. and Greenblatt, Martha and Steiner, Myles A. and Friedman, Daniel and Deutsch, Todd G. and Garfunkel, Eric and Dismukes, G. Charles},
abstractNote = {Durable performance and high efficiency in solar-driven water splitting are great challenges not yet co-achieved in photoelectrochemical (PEC) cells. Although photovoltaic cells made from III–V semiconductors can achieve high optical–electrical conversion efficiency, their functional integration with electrocatalysts and operational lifetime remain great challenges. Herein, an ultra-thin TiN layer was used as a diffusion barrier on a buried junction n+p-GaInP2 photocathode, to enable elevated temperatures for subsequent catalyst growth of Ni5P4 as nano-islands without damaging the GaInP2 junction. The resulting PEC half-cell showed negligible absorption loss, with saturated photocurrent density and H2 evolution equivalent to the benchmark photocathode decorated with PtRu catalysts. High corrosion-resistant Ni5P4/TiN layers showed undiminished photocathode operation over 120 h, exceeding previous benchmarks. Etching to remove electrodeposited copper, an introduced contaminant, restored full performance, demonstrating operational ruggedness. The TiN layer expands the synthesis conditions and protects against corrosion for stable operation of III–V PEC devices, while the Ni5P4 catalyst replaces costly and scarce noble metal catalysts.},
doi = {10.1039/c9se01264h},
journal = {Sustainable Energy & Fuels},
number = 3,
volume = 4,
place = {United States},
year = {Fri Jan 03 00:00:00 EST 2020},
month = {Fri Jan 03 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation
journal, March 2018


Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles
journal, June 2005


Photoelectrochemical decomposition of water utilizing monolithic tandem cells
journal, April 1998


Refractive indexes and extinction coefficients of n- and p-type doped GaInP, AlInP and AlGaInP for multijunction solar cells
journal, January 2018


Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50-2000 eV range
journal, December 1991

  • Tanuma, S.; Powell, C. J.; Penn, D. R.
  • Surface and Interface Analysis, Vol. 17, Issue 13
  • DOI: 10.1002/sia.740171305

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Photoelectrochemical Tandem Cells for Solar Water Splitting
journal, July 2013

  • Prévot, Mathieu S.; Sivula, Kevin
  • The Journal of Physical Chemistry C, Vol. 117, Issue 35
  • DOI: 10.1021/jp405291g

Electrochemical Stability of p-GaInP[sub 2] in Aqueous Electrolytes Toward Photoelectrochemical Water Splitting
journal, January 1998

  • Khaselev, Oscar
  • Journal of The Electrochemical Society, Vol. 145, Issue 10
  • DOI: 10.1149/1.1838808

MoS2—an integrated protective and active layer on n+p-Si for solar H2 evolution
journal, January 2013

  • Laursen, Anders B.; Pedersen, Thomas; Malacrida, Paolo
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 46
  • DOI: 10.1039/c3cp52890a

Thermal reliability and characterization of InGaP Schottky contact with Ti/Pt/Au metals
journal, January 1997


Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials
journal, August 2014

  • Benck, Jesse D.; Lee, Sang Chul; Fong, Kara D.
  • Advanced Energy Materials, Vol. 4, Issue 18
  • DOI: 10.1002/aenm.201400739

Hydrogen Evolution from Pt/Ru-Coated p-Type WSe 2 Photocathodes
journal, December 2012

  • McKone, James R.; Pieterick, Adam P.; Gray, Harry B.
  • Journal of the American Chemical Society, Vol. 135, Issue 1
  • DOI: 10.1021/ja308581g

Accelerated publication 30.2% efficient GaInP/GaAs monolithic two-terminal tandem concentrator cell
journal, January 1995

  • Friedman, D. J.; Kurtz, Sarah R.; Bertness, K. A.
  • Progress in Photovoltaics: Research and Applications, Vol. 3, Issue 1
  • DOI: 10.1002/pip.4670030105

Hydrogen production from renewable sources: biomass and photocatalytic opportunities
journal, January 2009

  • Navarro, R. M.; Sánchez-Sánchez, M. C.; Alvarez-Galvan, M. C.
  • Energy Environ. Sci., Vol. 2, Issue 1
  • DOI: 10.1039/B808138G

Synchrotron Photoemission Spectroscopy Study of p-GaInP 2 (100) Electrodes Emersed from Aqueous HCl Solution under Cathodic Conditions
journal, April 2017

  • Lebedev, Mikhail V.; Calvet, Wolfram; Kaiser, Bernhard
  • The Journal of Physical Chemistry C, Vol. 121, Issue 16
  • DOI: 10.1021/acs.jpcc.7b01343

Stable Unassisted Solar Water Splitting on Semiconductor Photocathodes Protected by Multifunctional GaN Nanostructures
journal, June 2019


Nanocrystalline Ni 5 P 4 : a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media
journal, January 2015

  • Laursen, A. B.; Patraju, K. R.; Whitaker, M. J.
  • Energy & Environmental Science, Vol. 8, Issue 3
  • DOI: 10.1039/C4EE02940B

Protection of GaInP 2 Photocathodes by Direct Photoelectrodeposition of MoS x Thin Films
journal, June 2019

  • Lancaster, Mitchell; Mow, Rachel; Liu, Jun
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 28
  • DOI: 10.1021/acsami.9b03742

Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes
journal, May 2016

  • Britto, Reuben J.; Benck, Jesse D.; Young, James L.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 11
  • DOI: 10.1021/acs.jpclett.6b00563

Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV
journal, January 1983


Progress Towards a 30% Efficient GaInP/Si Tandem Solar Cell
journal, August 2015


Renewable hydrogen production
journal, January 2008

  • Turner, John; Sverdrup, George; Mann, Margaret K.
  • International Journal of Energy Research, Vol. 32, Issue 5
  • DOI: 10.1002/er.1372

Phosphonic Acid Modification of GaInP 2 Photocathodes Toward Unbiased Photoelectrochemical Water Splitting
journal, May 2015

  • MacLeod, Bradley A.; Steirer, K. Xerxes; Young, James L.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 21
  • DOI: 10.1021/acsami.5b01814

The challenge to keep global warming below 2 °C
journal, December 2012

  • Peters, Glen P.; Andrew, Robbie M.; Boden, Tom
  • Nature Climate Change, Vol. 3, Issue 1
  • DOI: 10.1038/nclimate1783

Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends
journal, January 2015

  • Kibsgaard, Jakob; Tsai, Charlie; Chan, Karen
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE02179K

Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures
journal, March 2017

  • Young, James L.; Steiner, Myles A.; Döscher, Henning
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.28

Low‐temperature processing of titanium nitride films by laser physical vapor deposition
journal, April 1989

  • Biunno, N.; Narayan, J.; Hofmeister, S. K.
  • Applied Physics Letters, Vol. 54, Issue 16
  • DOI: 10.1063/1.101338

Creating stable interfaces between reactive materials: titanium nitride protects photoabsorber–catalyst interface in water-splitting photocathodes
journal, January 2019

  • Hwang, Shinjae; Porter, Spencer H.; Laursen, Anders B.
  • Journal of Materials Chemistry A, Vol. 7, Issue 5
  • DOI: 10.1039/C8TA12186A

Operational optimization and demand response of hybrid renewable energy systems
journal, April 2015


Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Helium ion microscopy and its application to nanotechnology and nanometrology
journal, November 2008

  • Postek, Michael T.; Vladár, Andras E.
  • Scanning, Vol. 30, Issue 6
  • DOI: 10.1002/sca.20129

Characteristics of titanium nitride films grown by pulsed laser deposition
journal, June 1996

  • Chowdhury, R.; Vispute, R. D.; Jagannadham, K.
  • Journal of Materials Research, Vol. 11, Issue 6
  • DOI: 10.1557/JMR.1996.0182

A graded catalytic–protective layer for an efficient and stable water-splitting photocathode
journal, January 2017