DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strained bilayer WSe 2 with reduced exciton-phonon coupling

Abstract

Herein we investigate excitonic absorption and emission in bilayer WSe2 under tensile strain. We observe a redshift of 110 meV in the energy of the $$A$$ exciton absorption peak (at the direct gap at the $$K$$ point in the Brillouin zone) under 2.1% uniaxial tensile strain. In addition, under the same strain, the spectral linewidth of the $$A$$ exciton at room temperature decreases by a factor of 2, from 70 to 36 meV. We show that this decrease is a result of suppression of phonon-mediated exciton scattering channels. This suppression is associated with the relative upshift under strain of the $$Q$$ valley in the conduction band (involved in the indirect exciton emission), which is nearly degenerate with the $$K$$ valley (involved in the A exciton). We analyze the strain-dependent absorption and photoluminescence spectra to determine the relative positions of these valleys and to infer intervalley scattering rates. Our model describes well the decrease and the distinct trends in the $$A$$ exciton linewidth of monolayer and bilayer WSe2 under strain. The results show that strain can be used to tune, as well as to probe, the relative energies of band extrema and exciton scattering channels in two-dimensional semiconductors.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [2]
  1. Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials
  2. Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
Stanford Univ., CA (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1605986
Alternate Identifier(s):
OSTI ID: 1605972; OSTI ID: 1616991
Grant/Contract Number:  
SC0019140; DMR-1420634; FA9550-17-1-0002; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 101; Journal Issue: 11; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Excitons; electronic structure; electron-phonon coupling; strain; two-dimensional materials; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Aslan, Ozgur Burak, Deng, Minda, Brongersma, Mark L., and Heinz, Tony F. Strained bilayer WSe2 with reduced exciton-phonon coupling. United States: N. p., 2020. Web. doi:10.1103/PhysRevB.101.115305.
Aslan, Ozgur Burak, Deng, Minda, Brongersma, Mark L., & Heinz, Tony F. Strained bilayer WSe2 with reduced exciton-phonon coupling. United States. https://doi.org/10.1103/PhysRevB.101.115305
Aslan, Ozgur Burak, Deng, Minda, Brongersma, Mark L., and Heinz, Tony F. Mon . "Strained bilayer WSe2 with reduced exciton-phonon coupling". United States. https://doi.org/10.1103/PhysRevB.101.115305. https://www.osti.gov/servlets/purl/1605986.
@article{osti_1605986,
title = {Strained bilayer WSe2 with reduced exciton-phonon coupling},
author = {Aslan, Ozgur Burak and Deng, Minda and Brongersma, Mark L. and Heinz, Tony F.},
abstractNote = {Herein we investigate excitonic absorption and emission in bilayer WSe2 under tensile strain. We observe a redshift of 110 meV in the energy of the $A$ exciton absorption peak (at the direct gap at the $K$ point in the Brillouin zone) under 2.1% uniaxial tensile strain. In addition, under the same strain, the spectral linewidth of the $A$ exciton at room temperature decreases by a factor of 2, from 70 to 36 meV. We show that this decrease is a result of suppression of phonon-mediated exciton scattering channels. This suppression is associated with the relative upshift under strain of the $Q$ valley in the conduction band (involved in the indirect exciton emission), which is nearly degenerate with the $K$ valley (involved in the A exciton). We analyze the strain-dependent absorption and photoluminescence spectra to determine the relative positions of these valleys and to infer intervalley scattering rates. Our model describes well the decrease and the distinct trends in the $A$ exciton linewidth of monolayer and bilayer WSe2 under strain. The results show that strain can be used to tune, as well as to probe, the relative energies of band extrema and exciton scattering channels in two-dimensional semiconductors.},
doi = {10.1103/PhysRevB.101.115305},
journal = {Physical Review B},
number = 11,
volume = 101,
place = {United States},
year = {Mon Mar 23 00:00:00 EDT 2020},
month = {Mon Mar 23 00:00:00 EDT 2020}
}

Journal Article:

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Strain engineering of WS 2 , WSe 2 , and WTe 2
journal, January 2014

  • Amin, B.; Kaloni, T. P.; Schwingenschlögl, U.
  • RSC Advances, Vol. 4, Issue 65
  • DOI: 10.1039/C4RA06378C

Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS 2
journal, September 2013


Visualizing electrostatic gating effects in two-dimensional heterostructures
journal, July 2019


Radiatively Limited Dephasing and Exciton Dynamics in MoSe 2 Monolayers Revealed with Four-Wave Mixing Microscopy
journal, August 2016


High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
journal, April 2015


Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe 2
journal, July 2014

  • Desai, Sujay B.; Seol, Gyungseon; Kang, Jeong Seuk
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl501638a

Spin–orbit coupling in the band structure of monolayer WSe 2
journal, April 2015


Strain Engineering and Raman Spectroscopy of Monolayer Transition Metal Dichalcogenides
journal, July 2018


Excitonic Linewidth Approaching the Homogeneous Limit in MoS 2 -Based van der Waals Heterostructures
journal, May 2017


Strain Control of Exciton–Phonon Coupling in Atomically Thin Semiconductors
journal, February 2018


Anomalous Raman spectra and thickness-dependent electronic properties of WSe 2
journal, April 2013


Strain-modulated excitonic gaps in mono- and bi-layer MoSe 2
journal, July 2016


Intrinsic electrical transport properties of monolayer silicene and MoS 2 from first principles
journal, March 2013


Dielectric Genome of van der Waals Heterostructures
journal, June 2015


Pressure-induced K–Λ crossing in monolayer WSe 2
journal, January 2016


Elucidating the Optical Properties of Novel Heterolayered Materials Based on MoTe 2 –InN for Photovoltaic Applications
journal, May 2015

  • Villegas, Cesar E. P.; Rocha, A. R.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 21
  • DOI: 10.1021/jp5122596

k · p theory for two-dimensional transition metal dichalcogenide semiconductors
journal, April 2015


Phonon Sidebands in Monolayer Transition Metal Dichalcogenides
journal, November 2017


Exciton dynamics in WSe 2 bilayers
journal, November 2014

  • Wang, G.; Marie, X.; Bouet, L.
  • Applied Physics Letters, Vol. 105, Issue 18
  • DOI: 10.1063/1.4900945

Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
journal, September 2015

  • Moody, Galan; Kavir Dass, Chandriker; Hao, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9315

Shubnikov–de Haas Oscillations of High-Mobility Holes in Monolayer and Bilayer WSe 2 : Landau Level Degeneracy, Effective Mass, and Negative Compressibility
journal, February 2016


Exciton broadening and band renormalization due to Dexter-like intervalley coupling
journal, February 2018


Semiconductor to metal transition in bilayer transition metals dichalcogenides MX 2 ( M = Mo, W; X = S, Se, Te)
journal, August 2013

  • Kumar, Ashok; Ahluwalia, P. K.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue 6
  • DOI: 10.1088/0965-0393/21/6/065015

Finite-momentum exciton landscape in mono- and bilayer transition metal dichalcogenides
journal, April 2019


Enhancement of Exciton–Phonon Scattering from Monolayer to Bilayer WS 2
journal, August 2018


Coulomb engineering of the bandgap and excitons in two-dimensional materials
journal, May 2017

  • Raja, Archana; Chaves, Andrey; Yu, Jaeeun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15251

Bandgap Engineering of Strained Monolayer and Bilayer MoS2
journal, July 2013

  • Conley, Hiram J.; Wang, Bin; Ziegler, Jed I.
  • Nano Letters, Vol. 13, Issue 8, p. 3626-3630
  • DOI: 10.1021/nl4014748

Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
journal, November 2016

  • Selig, Malte; Berghäuser, Gunnar; Raja, Archana
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13279

Strain tuning of excitons in monolayer WSe 2
journal, September 2018


Precise and reversible band gap tuning in single-layer MoSe 2 by uniaxial strain
journal, January 2016

  • Island, Joshua O.; Kuc, Agnieszka; Diependaal, Erik H.
  • Nanoscale, Vol. 8, Issue 5
  • DOI: 10.1039/C5NR08219F

Stretching and Breaking of Ultrathin MoS 2
journal, November 2011

  • Bertolazzi, Simone; Brivio, Jacopo; Kis, Andras
  • ACS Nano, Vol. 5, Issue 12
  • DOI: 10.1021/nn203879f

Exciton radiative lifetime in transition metal dichalcogenide monolayers
journal, May 2016


Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides
journal, July 2014


Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers
journal, July 2017

  • Ajayi, Obafunso A.; Ardelean, Jenny V.; Shepard, Gabriella D.
  • 2D Materials, Vol. 4, Issue 3
  • DOI: 10.1088/2053-1583/aa6aa1

Tightly Bound Excitons in Monolayer WSe 2
journal, July 2014


Photoluminescence emission and Raman response of monolayer MoS_2, MoSe_2, and WSe_2
journal, January 2013

  • Tonndorf, Philipp; Schmidt, Robert; Böttger, Philipp
  • Optics Express, Vol. 21, Issue 4
  • DOI: 10.1364/OE.21.004908

Origin of Indirect Optical Transitions in Few-Layer MoS 2 , WS 2 , and WSe 2
journal, October 2013

  • Zhao, Weijie; Ribeiro, R. M.; Toh, Minglin
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl403270k

Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS 2
journal, August 2016


Very large strain gauges based on single layer MoSe 2 and WSe 2 for sensing applications
journal, December 2015

  • Hosseini, Manouchehr; Elahi, Mohammad; Pourfath, Mahdi
  • Applied Physics Letters, Vol. 107, Issue 25
  • DOI: 10.1063/1.4937438

Experimental Demonstration of Continuous Electronic Structure Tuning via Strain in Atomically Thin MoS 2
journal, May 2013

  • He, Keliang; Poole, Charles; Mak, Kin Fai
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl4013166

Electronic properties of single-layer and multilayer transition metal dichalcogenides MX 2 ( M = Mo, W and X = S, Se): Electronic properties of TMDs
journal, September 2014

  • Roldán, Rafael; Silva-Guillén, Jose A.; López-Sancho, M. Pilar
  • Annalen der Physik, Vol. 526, Issue 9-10
  • DOI: 10.1002/andp.201400128

Band structure engineering of monolayer MoS 2 on h-BN: first-principles calculations
journal, January 2014


Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer
journal, February 2016

  • Man, Michael K. L.; Deckoff-Jones, Skylar; Winchester, Andrew
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep20890

Impact of strain on the excitonic linewidth in transition metal dichalcogenides
journal, November 2018


Phonon-limited mobility in n -type single-layer MoS 2 from first principles
journal, March 2012

  • Kaasbjerg, Kristen; Thygesen, Kristian S.; Jacobsen, Karsten W.
  • Physical Review B, Vol. 85, Issue 11
  • DOI: 10.1103/PhysRevB.85.115317

Strain-Induced Modulation of Electron Mobility in Single-Layer Transition Metal Dichalcogenides MX 2 ( $M = {\rm Mo}$ , W; $X = {\rm S}$ , Se)
journal, October 2015

  • Hosseini, Manouchehr; Elahi, Mohammad; Pourfath, Mahdi
  • IEEE Transactions on Electron Devices, Vol. 62, Issue 10
  • DOI: 10.1109/TED.2015.2461617

Dielectric disorder in two-dimensional materials
journal, August 2019


Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2
journal, July 2015

  • Poellmann, C.; Steinleitner, P.; Leierseder, U.
  • Nature Materials, Vol. 14, Issue 9
  • DOI: 10.1038/nmat4356

Structural and electronic properties of MoS 2 , WS 2 , and WS 2 /MoS 2 heterostructures encapsulated with hexagonal boron nitride monolayers
journal, August 2017

  • Yelgel, C.; Yelgel, Ö. C.; Gülseren, O.
  • Journal of Applied Physics, Vol. 122, Issue 6
  • DOI: 10.1063/1.4998522

Strain-induced giant second-harmonic generation in monolayered 2H-MoX2 (X = S, Se, Te)
journal, December 2015

  • Rhim, S. H.; Kim, Yong Soo; Freeman, A. J.
  • Applied Physics Letters, Vol. 107, Issue 24
  • DOI: 10.1063/1.4938120

Orbital analysis of electronic structure and phonon dispersion in MoS 2 , MoSe 2 , WS 2 , and WSe 2 monolayers under strain
journal, November 2013


Probing the Optical Properties and Strain-Tuning of Ultrathin Mo 1– x W x Te 2
journal, March 2018


Reversible uniaxial strain tuning in atomically thin WSe 2
journal, June 2016


Evolution of Electronic Structure in Atomically Thin Sheets of WS 2 and WSe 2
journal, December 2012

  • Zhao, Weijie; Ghorannevis, Zohreh; Chu, Leiqiang
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305275h

Strain-engineered growth of two-dimensional materials
journal, September 2017


Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS 2
journal, August 2014


Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2
journal, November 2014


Two-dimensional models for the optical response of thin films
journal, March 2018


Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures
journal, February 2017

  • Wilson, Neil R.; Nguyen, Paul V.; Seyler, Kyle
  • Science Advances, Vol. 3, Issue 2
  • DOI: 10.1126/sciadv.1601832