DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries

Abstract

Society’s long-standing energy demands have fuelled for centuries the quest for power-dense, portable and economically viable energy carriers. Since the birth of the first rechargeable battery in 1860, emerging battery technologies have provided both answers to these demands as well as additional obstacles. One ubiquitous energy storage device, the metal or metalion battery, offers quintessential examples of both. The strongly reducing nature of Group 1 and 2 metal ions qualifies these elements as viable energy-dense anode materials: standard reduction potentials several volts below that of the standard hydrogen electrode (SHE) allow a thermodynamically favourable oxidation of these metals to readily release electrons that shuttle through an external circuit, generating the electric current that serves as the power supply during battery discharge. Integration of energy-dense materials into devices allows power sources to be compact and portable, by maximizing energy output per unit mass of material. Further, the reversibility of these oxidation events makes possible extensive battery cycling, thus providing a rechargeable power source. Indeed, current Li-ion batteries boast an energy density of 265 Wh kg-1, with the potential of a 20% improvement, and are operable for over 1000 charge–discharge cycles.

Authors:
 [1]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1601987
Grant/Contract Number:  
SC0018235
Resource Type:
Accepted Manuscript
Journal Name:
Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences
Additional Journal Information:
Journal Volume: 377; Journal Issue: 2149; Journal ID: ISSN 1364-503X
Publisher:
The Royal Society Publishing
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; MOF; COF; metal-ion batteries; solid-state electrolyte

Citation Formats

Miner, Elise M., and Dincă, Mircea. Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries. United States: N. p., 2019. Web. doi:10.1098/rsta.2018.0225.
Miner, Elise M., & Dincă, Mircea. Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries. United States. https://doi.org/10.1098/rsta.2018.0225
Miner, Elise M., and Dincă, Mircea. Mon . "Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries". United States. https://doi.org/10.1098/rsta.2018.0225. https://www.osti.gov/servlets/purl/1601987.
@article{osti_1601987,
title = {Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries},
author = {Miner, Elise M. and Dincă, Mircea},
abstractNote = {Society’s long-standing energy demands have fuelled for centuries the quest for power-dense, portable and economically viable energy carriers. Since the birth of the first rechargeable battery in 1860, emerging battery technologies have provided both answers to these demands as well as additional obstacles. One ubiquitous energy storage device, the metal or metalion battery, offers quintessential examples of both. The strongly reducing nature of Group 1 and 2 metal ions qualifies these elements as viable energy-dense anode materials: standard reduction potentials several volts below that of the standard hydrogen electrode (SHE) allow a thermodynamically favourable oxidation of these metals to readily release electrons that shuttle through an external circuit, generating the electric current that serves as the power supply during battery discharge. Integration of energy-dense materials into devices allows power sources to be compact and portable, by maximizing energy output per unit mass of material. Further, the reversibility of these oxidation events makes possible extensive battery cycling, thus providing a rechargeable power source. Indeed, current Li-ion batteries boast an energy density of 265 Wh kg-1, with the potential of a 20% improvement, and are operable for over 1000 charge–discharge cycles.},
doi = {10.1098/rsta.2018.0225},
journal = {Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences},
number = 2149,
volume = 377,
place = {United States},
year = {Mon May 27 00:00:00 EDT 2019},
month = {Mon May 27 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Solid-State Sodium Batteries
journal, February 2018

  • Zhao, Chenglong; Liu, Lilu; Qi, Xingguo
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201703012

Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials
journal, April 2017


Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities
journal, May 2017


Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage
journal, April 2018


Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives
journal, June 2018


High-voltage positive electrode materials for lithium-ion batteries
journal, January 2017

  • Li, Wangda; Song, Bohang; Manthiram, Arumugam
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/C6CS00875E

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Electrolytes for Lithium and Lithium-Ion Batteries
book, January 2014


Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Recent advances in all-solid-state rechargeable lithium batteries
journal, March 2017


A review of polymer electrolytes: fundamental, approaches and applications
journal, June 2016


Superionic Conductivity in Lithium-Rich Anti-Perovskites
journal, August 2012

  • Zhao, Yusheng; Daemen, Luke L.
  • Journal of the American Chemical Society, Vol. 134, Issue 36
  • DOI: 10.1021/ja305709z

Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X= Cl, Br)
journal, January 2016


Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites
journal, October 2015


Liquid‐Like Ionic Conduction in Solid Lithium and Sodium Monocarba‐ closo ‐Decaborates Near or at Room Temperature
journal, February 2016

  • Tang, Wan Si; Matsuo, Motoaki; Wu, Hui
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502237

High temperature sodium batteries: status, challenges and future trends
journal, January 2013

  • Hueso, Karina B.; Armand, Michel; Rojo, Teófilo
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee24086j

Metal–organic frameworks as solid magnesium electrolytes
journal, January 2014

  • Aubrey, M. L.; Ameloot, R.; Wiers, B. M.
  • Energy & Environmental Science, Vol. 7, Issue 2
  • DOI: 10.1039/c3ee43143f

Metal–organic frameworks for energy storage: Batteries and supercapacitors
journal, January 2016


Designer coordination polymers: dimensional crossover architectures and proton conduction
journal, January 2013

  • Yamada, Teppei; Otsubo, Kazuya; Makiura, Rie
  • Chemical Society Reviews, Vol. 42, Issue 16
  • DOI: 10.1039/c3cs60028a

Metal-organic frameworks for lithium ion batteries and supercapacitors
journal, March 2015


Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges
journal, December 2017


Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?
journal, August 2012

  • Farha, Omar K.; Eryazici, Ibrahim; Jeong, Nak Cheon
  • Journal of the American Chemical Society, Vol. 134, Issue 36, p. 15016-15021
  • DOI: 10.1021/ja3055639

Electrically Conductive Porous Metal-Organic Frameworks
journal, January 2016

  • Sun, Lei; Campbell, Michael G.; Dincă, Mircea
  • Angewandte Chemie International Edition, Vol. 55, Issue 11
  • DOI: 10.1002/anie.201506219

Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study
journal, April 2011


Promising Routes to a High Li + Transference Number Electrolyte for Lithium Ion Batteries
journal, October 2017


Achieving Superprotonic Conduction in Metal–Organic Frameworks through Iterative Design Advances
journal, January 2018

  • Kim, SiRim; Joarder, Biplab; Hurd, Jeff A.
  • Journal of the American Chemical Society, Vol. 140, Issue 3
  • DOI: 10.1021/jacs.7b11364

Proton conductors produced by chemical modifications of carbon allotropes, perovskites and metal organic frameworks
journal, January 2017

  • Karim, Mohammad Razaul; Hatakeyama, Kazuto; Koinuma, Michio
  • Journal of Materials Chemistry A, Vol. 5, Issue 16
  • DOI: 10.1039/C6TA10923C

Proton-Conductive Metal–Organic Frameworks
journal, January 2016

  • Yamada, Teppei; Sadakiyo, Masaaki; Shigematsu, Akihito
  • Bulletin of the Chemical Society of Japan, Vol. 89, Issue 1
  • DOI: 10.1246/bcsj.20150308

A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte
journal, January 2014


Charge–discharge studies of all-solid-state Li/LiFePO 4 cells with PEO-based composite electrolytes encompassing metal organic frameworks
journal, January 2016

  • Suriyakumar, Shruti; Kanagaraj, M.; Angulakshmi, N.
  • RSC Advances, Vol. 6, Issue 99
  • DOI: 10.1039/C6RA17962B

Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries
journal, January 2014

  • Senthil Kumar, R.; Raja, M.; Anbu Kulandainathan, M.
  • RSC Adv., Vol. 4, Issue 50
  • DOI: 10.1039/C4RA03147D

Composite Polymer Electrolytes Encompassing Metal Organic Frame Works: A New Strategy for All-Solid-State Lithium Batteries
journal, October 2014

  • Angulakshmi, N.; Kumar, R. Senthil; Kulandainathan, M. Anbu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 42
  • DOI: 10.1021/jp506464v

Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries
journal, January 2014

  • Gerbaldi, Claudio; Nair, Jijeesh R.; Kulandainathan, M. Anbu
  • J. Mater. Chem. A, Vol. 2, Issue 26
  • DOI: 10.1039/C4TA01856G

Ionic liquid transported into metal–organic frameworks
journal, January 2016


Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries
journal, July 2018


Modified Metal Organic Frameworks (MOFs)/Ionic Liquid Matrices for Efficient Charge Storage
journal, January 2017

  • Singh, Ankit; Vedarajan, Raman; Matsumi, Noriyoshi
  • Journal of The Electrochemical Society, Vol. 164, Issue 8
  • DOI: 10.1149/2.0191708jes

Hybridization of metal–organic frameworks and task-specific ionic liquids: fundamentals and challenges
journal, January 2018

  • Luo, Qun-xing; An, Bo-wen; Ji, Min
  • Materials Chemistry Frontiers, Vol. 2, Issue 2
  • DOI: 10.1039/C7QM00416H

Lithium Ion Diffusion in a Metal–Organic Framework Mediated by an Ionic Liquid
journal, October 2015


A Metal-Organic-Framework-Based Electrolyte with Nanowetted Interfaces for High-Energy-Density Solid-State Lithium Battery
journal, November 2017


Stabilization of Hexaaminobenzene in a 2D Conductive Metal–Organic Framework for High Power Sodium Storage
journal, July 2018

  • Park, Jihye; Lee, Minah; Feng, Dawei
  • Journal of the American Chemical Society, Vol. 140, Issue 32
  • DOI: 10.1021/jacs.8b06020

Derivatives of coordination compounds for rechargeable batteries
journal, January 2018

  • Tang, Hao; Zheng, Mingbo; Hu, Qin
  • Journal of Materials Chemistry A, Vol. 6, Issue 29
  • DOI: 10.1039/C8TA03644F

Inorganic and organic hybrid solid electrolytes for lithium-ion batteries
journal, January 2016

  • Fu, Xiaotao; Yu, Danni; Zhou, Junwen
  • CrystEngComm, Vol. 18, Issue 23
  • DOI: 10.1039/C6CE00171H

A Solid Lithium Electrolyte via Addition of Lithium Isopropoxide to a Metal–Organic Framework with Open Metal Sites
journal, September 2011

  • Wiers, Brian M.; Foo, Maw-Lin; Balsara, Nitash P.
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja205827z

Physical techniques for the study of solid electrolytes
journal, August 1981


Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory
journal, April 2011

  • Valenzano, Loredana; Civalleri, Bartolomeo; Chavan, Sachin
  • Chemistry of Materials, Vol. 23, Issue 7, p. 1700-1718
  • DOI: 10.1021/cm1022882

Ionic Conductivity in the Metal-Organic Framework UiO-66 by Dehydration and Insertion of Lithium tert -Butoxide
journal, March 2013

  • Ameloot, Rob; Aubrey, Michael; Wiers, Brian M.
  • Chemistry - A European Journal, Vol. 19, Issue 18
  • DOI: 10.1002/chem.201300326

Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

Single-Ion Li + , Na + , and Mg 2+ Solid Electrolytes Supported by a Mesoporous Anionic Cu–Azolate Metal–Organic Framework
journal, September 2017

  • Park, Sarah S.; Tulchinsky, Yuri; Dincă, Mircea
  • Journal of the American Chemical Society, Vol. 139, Issue 38
  • DOI: 10.1021/jacs.7b06197

Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks
journal, April 2018


Cationic Covalent Organic Framework Nanosheets for Fast Li-Ion Conduction
journal, January 2018

  • Chen, Hongwei; Tu, Hangyu; Hu, Chenji
  • Journal of the American Chemical Society, Vol. 140, Issue 3
  • DOI: 10.1021/jacs.7b12292

Reactions of the Lithium Salts of the Tribenzylidenemethane Dianion, Diphenylacetone Dianion, and Related Compounds
journal, February 1998

  • Witt, Ortrun; Mauser, Harald; Friedl, Thomas
  • The Journal of Organic Chemistry, Vol. 63, Issue 4
  • DOI: 10.1021/jo971113c

Dilithium bis[(perfluoroalkyl)sulfonyl]diimide salts as electrolytes for rechargeable lithium batteries
journal, August 2004


New trivalent imidazole-derived salt for lithium-ion cell electrolyte
journal, April 2014


Synthesis and characterization of a novel electrolyte based on bis[(perfluoroalkyl)sulfonyl]triimide trianion
journal, January 2004


Tetraarylborate polymer networks as single-ion conducting solid electrolytes
journal, January 2015

  • Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin
  • Chemical Science, Vol. 6, Issue 10
  • DOI: 10.1039/C5SC02052B

Chloride ion conductivity in a plasticized quaternary ammonium polymer
journal, July 1984


Ionic Covalent Organic Frameworks with Spiroborate Linkage
journal, December 2015

  • Du, Ya; Yang, Haishen; Whiteley, Justin Michael
  • Angewandte Chemie International Edition, Vol. 55, Issue 5
  • DOI: 10.1002/anie.201509014

Plastic crystalline lithium salt with solid-state ionic conductivity and high lithium transport number
journal, January 2011

  • Moriya, Makoto; Kato, Daiki; Sakamoto, Wataru
  • Chemical Communications, Vol. 47, Issue 22
  • DOI: 10.1039/c1cc00070e

Scandium/Alkaline Metal–Organic Frameworks: Adsorptive Properties and Ionic Conductivity
journal, April 2016


Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity
journal, July 2016

  • Vazquez-Molina, Demetrius A.; Mohammad-Pour, Gavin S.; Lee, Chain
  • Journal of the American Chemical Society, Vol. 138, Issue 31
  • DOI: 10.1021/jacs.6b05568

Ion Conduction in Polyelectrolyte Covalent Organic Frameworks
journal, May 2018

  • Xu, Qing; Tao, Shanshan; Jiang, Qiuhong
  • Journal of the American Chemical Society, Vol. 140, Issue 24
  • DOI: 10.1021/jacs.8b03814

Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density
journal, January 2018

  • Wang, Longlong; Chen, Bingbing; Ma, Jun
  • Chemical Society Reviews, Vol. 47, Issue 17
  • DOI: 10.1039/C8CS00322J

“Electrolytes for Lithium and Lithium-Ion Batteries”
journal, January 2015


Ionic Covalent Organic Frameworks with Spiroborate Linkage
journal, December 2015

  • Du, Ya; Yang, Haishen; Whiteley, Justin Michael
  • Angewandte Chemie, Vol. 128, Issue 5
  • DOI: 10.1002/ange.201509014

Lithium Batteries and Cathode Materials
journal, December 2004


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, December 2004


A Metal-Organic-Framework-Based Electrolyte with Nanowetted Interfaces for High-Energy-Density Solid-State Lithium Battery
journal, November 2017


Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives
journal, June 2018


Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks
journal, April 2018


Electrically Conductive Porous Metal-Organic Frameworks
journal, January 2016

  • Sun, Lei; Campbell, Michael G.; Dincă, Mircea
  • Angewandte Chemie International Edition, Vol. 55, Issue 11
  • DOI: 10.1002/anie.201506219

Ionic Covalent Organic Frameworks with Spiroborate Linkage
journal, December 2015

  • Du, Ya; Yang, Haishen; Whiteley, Justin Michael
  • Angewandte Chemie International Edition, Vol. 55, Issue 5
  • DOI: 10.1002/anie.201509014

Ionic Conductivity in the Metal-Organic Framework UiO-66 by Dehydration and Insertion of Lithium tert -Butoxide
journal, March 2013

  • Ameloot, Rob; Aubrey, Michael; Wiers, Brian M.
  • Chemistry - A European Journal, Vol. 19, Issue 18
  • DOI: 10.1002/chem.201300326

Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials
journal, April 2017


Electrolytes for Lithium and Lithium-Ion Batteries
book, January 2014


A review of polymer electrolytes: fundamental, approaches and applications
journal, June 2016


Metal–organic frameworks for energy storage: Batteries and supercapacitors
journal, January 2016


Ionic liquid transported into metal–organic frameworks
journal, January 2016


Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study
journal, April 2011


Synthesis and characterization of a novel electrolyte based on bis[(perfluoroalkyl)sulfonyl]triimide trianion
journal, January 2004


Dilithium bis[(perfluoroalkyl)sulfonyl]diimide salts as electrolytes for rechargeable lithium batteries
journal, August 2004


New trivalent imidazole-derived salt for lithium-ion cell electrolyte
journal, April 2014


Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites
journal, October 2015


Recent advances in all-solid-state rechargeable lithium batteries
journal, March 2017


Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries
journal, July 2018


Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X= Cl, Br)
journal, January 2016


Lithium Ion Diffusion in a Metal–Organic Framework Mediated by an Ionic Liquid
journal, October 2015


Scandium/Alkaline Metal–Organic Frameworks: Adsorptive Properties and Ionic Conductivity
journal, April 2016


Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities
journal, May 2017


Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory
journal, April 2011

  • Valenzano, Loredana; Civalleri, Bartolomeo; Chavan, Sachin
  • Chemistry of Materials, Vol. 23, Issue 7, p. 1700-1718
  • DOI: 10.1021/cm1022882

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


A Solid Lithium Electrolyte via Addition of Lithium Isopropoxide to a Metal–Organic Framework with Open Metal Sites
journal, September 2011

  • Wiers, Brian M.; Foo, Maw-Lin; Balsara, Nitash P.
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja205827z

Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?
journal, August 2012

  • Farha, Omar K.; Eryazici, Ibrahim; Jeong, Nak Cheon
  • Journal of the American Chemical Society, Vol. 134, Issue 36, p. 15016-15021
  • DOI: 10.1021/ja3055639

Superionic Conductivity in Lithium-Rich Anti-Perovskites
journal, August 2012

  • Zhao, Yusheng; Daemen, Luke L.
  • Journal of the American Chemical Society, Vol. 134, Issue 36
  • DOI: 10.1021/ja305709z

Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity
journal, July 2016

  • Vazquez-Molina, Demetrius A.; Mohammad-Pour, Gavin S.; Lee, Chain
  • Journal of the American Chemical Society, Vol. 138, Issue 31
  • DOI: 10.1021/jacs.6b05568

Achieving Superprotonic Conduction in Metal–Organic Frameworks through Iterative Design Advances
journal, January 2018

  • Kim, SiRim; Joarder, Biplab; Hurd, Jeff A.
  • Journal of the American Chemical Society, Vol. 140, Issue 3
  • DOI: 10.1021/jacs.7b11364

Stabilization of Hexaaminobenzene in a 2D Conductive Metal–Organic Framework for High Power Sodium Storage
journal, July 2018

  • Park, Jihye; Lee, Minah; Feng, Dawei
  • Journal of the American Chemical Society, Vol. 140, Issue 32
  • DOI: 10.1021/jacs.8b06020

Reactions of the Lithium Salts of the Tribenzylidenemethane Dianion, Diphenylacetone Dianion, and Related Compounds
journal, February 1998

  • Witt, Ortrun; Mauser, Harald; Friedl, Thomas
  • The Journal of Organic Chemistry, Vol. 63, Issue 4
  • DOI: 10.1021/jo971113c

Composite Polymer Electrolytes Encompassing Metal Organic Frame Works: A New Strategy for All-Solid-State Lithium Batteries
journal, October 2014

  • Angulakshmi, N.; Kumar, R. Senthil; Kulandainathan, M. Anbu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 42
  • DOI: 10.1021/jp506464v

Chloride ion conductivity in a plasticized quaternary ammonium polymer
journal, July 1984


Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

Plastic crystalline lithium salt with solid-state ionic conductivity and high lithium transport number
journal, January 2011

  • Moriya, Makoto; Kato, Daiki; Sakamoto, Wataru
  • Chemical Communications, Vol. 47, Issue 22
  • DOI: 10.1039/c1cc00070e

H 2 storage in isostructural UiO-67 and UiO-66 MOFs
journal, January 2012

  • Chavan, Sachin; Vitillo, Jenny G.; Gianolio, Diego
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 5
  • DOI: 10.1039/c1cp23434j

Designer coordination polymers: dimensional crossover architectures and proton conduction
journal, January 2013

  • Yamada, Teppei; Otsubo, Kazuya; Makiura, Rie
  • Chemical Society Reviews, Vol. 42, Issue 16
  • DOI: 10.1039/c3cs60028a

Cation exchange at the secondary building units of metal–organic frameworks
journal, January 2014


Low temperature ionic conductor: ionic liquid incorporated within a metal–organic framework
journal, January 2015

  • Fujie, Kazuyuki; Otsubo, Kazuya; Ikeda, Ryuichi
  • Chemical Science, Vol. 6, Issue 7
  • DOI: 10.1039/c5sc01398d

Proton-conducting crystalline porous materials
journal, January 2017

  • Meng, Xing; Wang, Hai-Ning; Song, Shu-Yan
  • Chemical Society Reviews, Vol. 46, Issue 2
  • DOI: 10.1039/c6cs00528d

Hybridization of MOFs and polymers
journal, January 2017

  • Kitao, Takashi; Zhang, Yuanyuan; Kitagawa, Susumu
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/c7cs00041c

Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage
journal, January 2017

  • Zhou, Junwen; Wang, Bo
  • Chemical Society Reviews, Vol. 46, Issue 22
  • DOI: 10.1039/c7cs00283a

Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks
journal, January 2018

  • Wang, Hao; Lustig, William P.; Li, Jing
  • Chemical Society Reviews, Vol. 47, Issue 13
  • DOI: 10.1039/c7cs00885f

Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges
journal, December 2017


Modified Metal Organic Frameworks (MOFs)/Ionic Liquid Matrices for Efficient Charge Storage
journal, January 2017

  • Singh, Ankit; Vedarajan, Raman; Matsumi, Noriyoshi
  • Journal of The Electrochemical Society, Vol. 164, Issue 8
  • DOI: 10.1149/2.0191708jes

Proton-Conductive Metal–Organic Frameworks
journal, January 2016

  • Yamada, Teppei; Sadakiyo, Masaaki; Shigematsu, Akihito
  • Bulletin of the Chemical Society of Japan, Vol. 89, Issue 1
  • DOI: 10.1246/bcsj.20150308

Works referencing / citing this record:

A pre-synthetic strategy to construct single ion conductive covalent organic frameworks
journal, January 2020

  • Li, Juan; Zhang, Fu-Qiang; Li, Falian
  • Chemical Communications, Vol. 56, Issue 18
  • DOI: 10.1039/d0cc00454e

Introduction: minerals to metal-organic frameworks
journal, May 2019

  • Phillips, Anthony E.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2149
  • DOI: 10.1098/rsta.2019.0153