DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Trapped Intermediate of a Meerwein–Pondorf–Verley Reduction of Hydroxy Benzaldehyde to a Dialkoxide by Titanium Alkoxides

Abstract

A series of titanium alkoxides ([Ti(OR)4] (OR = OCH(CH3)2 (OPri), OC(CH3)3 (OBut), and OCH2C(CH3)3 (ONep)) were modified with a set of substituted hydroxyl-benzaldehydes [HO-BzA-Lx: x = 1, 2-hydroxybenzaldehyde (L = H), 2-hydroxy-3-methoxybenzaldehyde (OMe-3), 5-bromo-2-hydroxybenzaldehyde (Br-5), 2-hydroxy-5-nitrobenzaldehyde (NO2-5); x = 2, 3,5-di-tert-butyl-2-hydroxybenzaldehyde (But-3,5), 2-hydroxy-3,5-diiodobenzaldehyde (I-3,5)] in pyridine (py). Instead of the expected simple substitution, each of the HO-BzA-Lx modifiers were reduced to their respective diol [(py)(OR)2Ti(κ2(O,μ-O')(OC6H4–x(CH2O)-2)(L)x] (OR = OPri, x = 1, L = H (1a), OMe-3 (2a), Br-5 (3a·py), NO2-5 (4a·4py); x = 2, But-3,5 (5a), I-3,5 (6a), ONep; x = 1, L = H (1b), OMe-3 (2b), Br-5 (3b·py), NO2-5 (4b); x = 2, But-3,5 (5b), I-3,5 (6b·py)), as identified by single crystal X-ray studies. The 1H NMR spectral data were complex at room temperature but simplified at high temperatures (70 °C). Diffusion ordered spectroscopy (DOSY) NMR experiments indicated that 2a maintained the dinuclear structure in a solution independent of the temperature, whereas 2b appears to be monomeric over the same temperature range. On the basis of additional NMR studies, the mechanism of the reduction of the HO-BzA-Lx to the dioxide ligand was thought to occur by a Meerwein–Pondorf–Verley (MPV) mechanism. The structures of 1a–6b appear to be themore » intermediate dioxide products of the MPV reduction, which became “trapped” by the Lewis basic solvate.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1];  [1]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1601436
Report Number(s):
SAND-2019-10594J
Journal ID: ISSN 0020-1669; 679189
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 59; Journal Issue: 1; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Redox reactions; X-raysPyridines; Crystal structure; Fourier transform infrared spectroscopy

Citation Formats

Boyle, Timothy J., Guerrero, Fernando, Alam, Todd M., Dunnigan, Kaylee A., Sears, Jeremiah M., and Wheeler, David R. Trapped Intermediate of a Meerwein–Pondorf–Verley Reduction of Hydroxy Benzaldehyde to a Dialkoxide by Titanium Alkoxides. United States: N. p., 2019. Web. doi:10.1021/acs.inorgchem.9b03134.
Boyle, Timothy J., Guerrero, Fernando, Alam, Todd M., Dunnigan, Kaylee A., Sears, Jeremiah M., & Wheeler, David R. Trapped Intermediate of a Meerwein–Pondorf–Verley Reduction of Hydroxy Benzaldehyde to a Dialkoxide by Titanium Alkoxides. United States. https://doi.org/10.1021/acs.inorgchem.9b03134
Boyle, Timothy J., Guerrero, Fernando, Alam, Todd M., Dunnigan, Kaylee A., Sears, Jeremiah M., and Wheeler, David R. Mon . "Trapped Intermediate of a Meerwein–Pondorf–Verley Reduction of Hydroxy Benzaldehyde to a Dialkoxide by Titanium Alkoxides". United States. https://doi.org/10.1021/acs.inorgchem.9b03134. https://www.osti.gov/servlets/purl/1601436.
@article{osti_1601436,
title = {Trapped Intermediate of a Meerwein–Pondorf–Verley Reduction of Hydroxy Benzaldehyde to a Dialkoxide by Titanium Alkoxides},
author = {Boyle, Timothy J. and Guerrero, Fernando and Alam, Todd M. and Dunnigan, Kaylee A. and Sears, Jeremiah M. and Wheeler, David R.},
abstractNote = {A series of titanium alkoxides ([Ti(OR)4] (OR = OCH(CH3)2 (OPri), OC(CH3)3 (OBut), and OCH2C(CH3)3 (ONep)) were modified with a set of substituted hydroxyl-benzaldehydes [HO-BzA-Lx: x = 1, 2-hydroxybenzaldehyde (L = H), 2-hydroxy-3-methoxybenzaldehyde (OMe-3), 5-bromo-2-hydroxybenzaldehyde (Br-5), 2-hydroxy-5-nitrobenzaldehyde (NO2-5); x = 2, 3,5-di-tert-butyl-2-hydroxybenzaldehyde (But-3,5), 2-hydroxy-3,5-diiodobenzaldehyde (I-3,5)] in pyridine (py). Instead of the expected simple substitution, each of the HO-BzA-Lx modifiers were reduced to their respective diol [(py)(OR)2Ti(κ2(O,μ-O')(OC6H4–x(CH2O)-2)(L)x] (OR = OPri, x = 1, L = H (1a), OMe-3 (2a), Br-5 (3a·py), NO2-5 (4a·4py); x = 2, But-3,5 (5a), I-3,5 (6a), ONep; x = 1, L = H (1b), OMe-3 (2b), Br-5 (3b·py), NO2-5 (4b); x = 2, But-3,5 (5b), I-3,5 (6b·py)), as identified by single crystal X-ray studies. The 1H NMR spectral data were complex at room temperature but simplified at high temperatures (70 °C). Diffusion ordered spectroscopy (DOSY) NMR experiments indicated that 2a maintained the dinuclear structure in a solution independent of the temperature, whereas 2b appears to be monomeric over the same temperature range. On the basis of additional NMR studies, the mechanism of the reduction of the HO-BzA-Lx to the dioxide ligand was thought to occur by a Meerwein–Pondorf–Verley (MPV) mechanism. The structures of 1a–6b appear to be the intermediate dioxide products of the MPV reduction, which became “trapped” by the Lewis basic solvate.},
doi = {10.1021/acs.inorgchem.9b03134},
journal = {Inorganic Chemistry},
number = 1,
volume = 59,
place = {United States},
year = {Mon Dec 16 00:00:00 EST 2019},
month = {Mon Dec 16 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reduction of Carbonyl Compounds by Lanthanide Metal/2-Propanol: In-situ Generation of Samarium Isopropyloxide for Stereoselective Meerwein−Ponndorf−Verley Reduction
journal, July 2004

  • Fukuzawa, Shin-ichi; Nakano, Narihito; Saitoh, Takahide
  • European Journal of Organic Chemistry, Vol. 2004, Issue 13
  • DOI: 10.1002/ejoc.200400030

N,N,O-Tridentate Mixed Lithium–Magnesium and Lithium–Aluminum Complexes: Synthesis, Characterization, and Catalytic Activities
journal, February 2017


A Well-Defined Monomeric Aluminum Complex as an Efficient and General Catalyst in the Meerwein-Ponndorf-Verley Reduction
journal, October 2014

  • McNerney, Brian; Whittlesey, Bruce; Cordes, David B.
  • Chemistry - A European Journal, Vol. 20, Issue 46
  • DOI: 10.1002/chem.201404994

MPV reduction using AlIII–calix[4]arene Lewis acid catalysts: Molecular-level insight into effect of ketone binding
journal, November 2011

  • Nandi, Partha; Matvieiev, Yuriy I.; Boyko, Vyacheslav I.
  • Journal of Catalysis, Vol. 284, Issue 1
  • DOI: 10.1016/j.jcat.2011.08.013

Meerwein–Ponndorf–Verley-Type Reduction Processes in Aluminum and Indium Isopropoxide Complexes of Imino-Phenolate Ligands
journal, July 2012

  • Normand, Mickael; Kirillov, Evgeny; Roisnel, Thierry
  • Organometallics, Vol. 31, Issue 15
  • DOI: 10.1021/om300481q

Activity of B(OEt)3-MCM-41 catalyst in the MPV reduction of crotonaldehyde
journal, November 2013


Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide
journal, January 2010


Mechanism of the Meerwein−Ponndorf−Verley−Oppenauer (MPVO) Redox Equilibrium on Sn− and Zr−Beta Zeolite Catalysts
journal, October 2006

  • Boronat, Mercedes; Corma, Avelino; Renz, Michael
  • The Journal of Physical Chemistry B, Vol. 110, Issue 42
  • DOI: 10.1021/jp063249x

Catalytic Meerwein−Pondorf−Verley Reduction by Simple Aluminum Complexes
journal, July 2001

  • Campbell, E. Joseph; Zhou, Hongying; Nguyen, SonBinh T.
  • Organic Letters, Vol. 3, Issue 15
  • DOI: 10.1021/ol0162116

Catalytic Redox-Initiated Glycolate Aldol Additions of Silyl Glyoxylates
journal, January 2009

  • Greszler, Stephen N.; Johnson, Jeffrey S.
  • Organic Letters, Vol. 11, Issue 4
  • DOI: 10.1021/ol802828d

Reduction of Aldehydes and Ketones Catalyzed by a Novel Aluminum Alkoxide:  Mechanistic Studies of Meerwein−Ponndorf−Verley Reaction
journal, May 2002

  • Liu, Yi-Chang; Ko, Bao-Tsan; Huang, Bor-Hunn
  • Organometallics, Vol. 21, Issue 10
  • DOI: 10.1021/om0200454

Meerwein–Ponndorf–Verley alkynylation of aldehydes: Essential modification of aluminium alkoxides for rate acceleration and asymmetric synthesis
journal, January 2004

  • Ooi, Takashi; Miura, Tomoya; Ohmatsu, Kohsuke
  • Org. Biomol. Chem., Vol. 2, Issue 22
  • DOI: 10.1039/B411090K

Enhanced catalytic activity of MCM-41-grafted aluminium isopropoxide in MPV reductions
journal, January 1998

  • Anwander, R.; Gerstberger, G.; Palm, C.
  • Chemical Communications, Issue 17
  • DOI: 10.1039/a802996b

Polymerization of Methacrylic Esters Using Metal Alkoxides Containing Lanthanoids
journal, October 1995

  • Habaue, Shigeki; Yoshikawa, Mayumi; Okamoto, Yoshio
  • Polymer Journal, Vol. 27, Issue 10
  • DOI: 10.1295/polymj.27.986

Titanium(IV) Neopentoxides. X-ray Structures of Ti 33 -O)(μ 3 -Cl)(μ-OCH 2 CMe 3 ) 3 (OCH 2 CMe 3 ) 6 and [Ti(μ-OCH 2 CMe 3 )(OCH 2 CMe 3 ) 3 ] 2
journal, July 1997

  • Boyle, Timothy J.; Alam, Todd M.; Mechenbier, Eric R.
  • Inorganic Chemistry, Vol. 36, Issue 15
  • DOI: 10.1021/ic960924g

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Crystal structure refinement with SHELXL
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053229614024218

OLEX2 : a complete structure solution, refinement and analysis program
journal, January 2009

  • Dolomanov, Oleg V.; Bourhis, Luc J.; Gildea, Richard J.
  • Journal of Applied Crystallography, Vol. 42, Issue 2
  • DOI: 10.1107/S0021889808042726

Ethylene polymerisation and oligomerisation with arene-substituted phenoxy-imine complexes of titanium: investigation of multi-mechanism catalytic behaviour
journal, January 2013

  • Suttil, James A.; McGuinness, David S.; Gardiner, Michael G.
  • Dalton Transactions, Vol. 42, Issue 12
  • DOI: 10.1039/c3dt32183e

Group 4 metal alkoxide complexes as catalysts for olefin polymerization
journal, January 1996

  • Matilainen, Leena; Klinga, Martti; Leskelä, Markku
  • J. Chem. Soc., Dalton Trans., Issue 2
  • DOI: 10.1039/DT9960000219

The synthesis, structure and ethene polymerisation catalysis of mono(salicylaldiminato) titanium and zirconium complexes
journal, January 2005

  • Pennington, Dale A.; Clegg, William; Coles, Simon J.
  • Dalton Transactions, Issue 3
  • DOI: 10.1039/b414229b

Six-Coordinate Titanium Complexes of a Tripodal Aminetris(phenoxide) Ligand:  Synthesis, Structure, and Dynamics
journal, March 2005

  • Fortner, Kevin C.; Bigi, Julian P.; Brown, Seth N.
  • Inorganic Chemistry, Vol. 44, Issue 8
  • DOI: 10.1021/ic048403d

Oligomerization of higher olefins on titanium(+4) and vanadium(+5) coordination compounds with 2-hydroxymethylphenol derivatives
journal, December 2014

  • Gagieva, S. Ch.; Kolosov, N. A.; Kurmaev, D. A.
  • Russian Chemical Bulletin, Vol. 63, Issue 12
  • DOI: 10.1007/s11172-014-0810-5

New titanium(IV) coordination compounds with 2-hydroxybenzyl alcohol derivatives used in the preparation of ultra-high molecular weight polyethylene
journal, February 2018


Novel titanium(IV) complexes stabilized by 2-hydroxybenzyl alcohol derivatives as catalysts for UHMWPE production
journal, July 2018


Chelating Dialkoxide Titanium Complex: A Versatile Building Block for the Construction of Heterometallic Derivatives
journal, March 2007

  • Fandos, Rosa; Hernández, Carolina; Otero, Antonio
  • Chemistry - A European Journal, Vol. 13, Issue 10
  • DOI: 10.1002/chem.200601480

Early–Late Heterobimetallic Alkoxides as Model Systems for Late-Transition-Metal Catalysts Supported on Titania
journal, February 2003

  • Fandos, Rosa; Hernández, Carolina; Otero, Antonio
  • Chemistry - A European Journal, Vol. 9, Issue 3
  • DOI: 10.1002/chem.200390075

Covalent Metal−Organic Networks:  Pyridines Induce 2-Dimensional Oligomerization of (μ-OC 6 H 4 O) 2 Mpy 2 (M = Ti, V, Zr)
journal, October 2000

  • Tanski, Joseph M.; Vaid, Thomas P.; Lobkovsky, Emil B.
  • Inorganic Chemistry, Vol. 39, Issue 21
  • DOI: 10.1021/ic0003473

Homo- and Heterometallic Complexes of Tetra-(Di-Substituted Hydroxybenzyl)- N , N ′-Ethylenediamine Derivatives
journal, October 2009

  • Boyle, Timothy J.; Pratt, Harry D.; Ottley, Leigh Anna M.
  • Inorganic Chemistry, Vol. 48, Issue 19
  • DOI: 10.1021/ic900691a

Catalytic asymmetric Meerwein–Ponndorf–Verley reduction of glyoxylates induced by a chiral N,N′-dioxide/Y(OTf) 3 complex
journal, January 2017

  • Wu, Wangbin; Zou, Sijia; Lin, Lili
  • Chemical Communications, Vol. 53, Issue 22
  • DOI: 10.1039/C7CC00273D