DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Air-Stable Direct Bandgap Perovskite Semiconductors: All-Inorganic Tin-Based Heteroleptic Halides Ax SnClyIz (A = Cs, Rb)

Abstract

Semiconducting halide perovskites are a group of materials with exciting photoelectronic properties. Compared to the widely studied hybrid organic–inorganic perovskites, the all-inorganic derivatives are less well understood even as they promise high inherent stability. At the moment, such materials are limited due to the fact that there is a very narrow choice of inorganic cations that can stabilize the desirable perovskite structure. Herein we report on the synthesis and characterization of novel all-inorganic tin-based perovskites and perovskitoids that can be stabilized by the heteroleptic coordination of chloride and iodide anions, Cs2SnCl2I2 (1) and Cs2.38Rb1.62Sn3Cl8I2 (2), consist of two-dimensional (2D) layers of [SnCl4I2]4– octahedra with different connectivity modes. Compound 1 is an n = 1 Ruddlesden–Popper type perovskite adopting the tetragonal archetype structure (I4/mmm space group; a = 5.5905(3) Å, c = 18.8982(13) Å), while compound 2 crystallizes as an orthorhombic modification (Cmcm space group; a = 5.6730(11) Å, b = 25.973(5) Å, c = 16.587(3) Å) with corrugated layers. The crystal chemistry changes drastically when Cs+ is replaced by the smaller Rb+ cation which leads to the isolation of the low dimensional compounds Rb3SnCl3I2 (3a), Rb3SnCl2.33I2.67 (3b) and Rb7Sn4.25Cl12I3.5 (4), thus illustrating the importance of the A-cation size in themore » formation of perovskites. The 2D perovskites show wide band gaps and relatively large resistivities, associated with their chemical stability against the oxidation of Sn2+. The chemical stability is coupled with remarkable electronic properties that derive from the perovskite structure. DFT calculations suggest that both compounds are direct band gap semiconductors with large bandwidths, consistently with the experimentally determined band gaps of Eg = 2.62 and 2.81 eV for 1 and 2, respectively. The combination of stability and favorable electronic structure in heteroleptic-halide perovskites presents a new direction toward the realization of functional devices made exclusively from inorganic perovskites.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2];  [3]; ORCiD logo [2];  [2]; ORCiD logo [2];  [4]; ORCiD logo [2]
  1. Tsinghua Univ., Beijing (China); Northwestern Univ., Evanston, IL (United States)
  2. Northwestern Univ., Evanston, IL (United States)
  3. Northwestern Univ., Evanston, IL (United States); Seoul National Univ. (Korea, Republic of)
  4. Tsinghua Univ., Beijing (China)
Publication Date:
Research Org.:
Univ. of California, Santa Barbara, CA (United States); Univ. of California, Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; National Science Foundation (NSF); National Natural Science Foundation of China (NSFC); Keck Foundation; Chinese Scholarship Council (CSC)
OSTI Identifier:
1599735
Grant/Contract Number:  
SC0012541; NNCI-1542205; DMR-1121262; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 14; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Li, Jiangwei, Stoumpos, Constantinos C., Trimarchi, Giancarlo G., Chung, In, Mao, Lingling, Chen, Michelle, Wasielewski, Michael R., Wang, Liduo, and Kanatzidis, Mercouri G. Air-Stable Direct Bandgap Perovskite Semiconductors: All-Inorganic Tin-Based Heteroleptic Halides Ax SnClyIz (A = Cs, Rb). United States: N. p., 2018. Web. doi:10.1021/acs.chemmater.8b02232.
Li, Jiangwei, Stoumpos, Constantinos C., Trimarchi, Giancarlo G., Chung, In, Mao, Lingling, Chen, Michelle, Wasielewski, Michael R., Wang, Liduo, & Kanatzidis, Mercouri G. Air-Stable Direct Bandgap Perovskite Semiconductors: All-Inorganic Tin-Based Heteroleptic Halides Ax SnClyIz (A = Cs, Rb). United States. https://doi.org/10.1021/acs.chemmater.8b02232
Li, Jiangwei, Stoumpos, Constantinos C., Trimarchi, Giancarlo G., Chung, In, Mao, Lingling, Chen, Michelle, Wasielewski, Michael R., Wang, Liduo, and Kanatzidis, Mercouri G. Wed . "Air-Stable Direct Bandgap Perovskite Semiconductors: All-Inorganic Tin-Based Heteroleptic Halides Ax SnClyIz (A = Cs, Rb)". United States. https://doi.org/10.1021/acs.chemmater.8b02232. https://www.osti.gov/servlets/purl/1599735.
@article{osti_1599735,
title = {Air-Stable Direct Bandgap Perovskite Semiconductors: All-Inorganic Tin-Based Heteroleptic Halides Ax SnClyIz (A = Cs, Rb)},
author = {Li, Jiangwei and Stoumpos, Constantinos C. and Trimarchi, Giancarlo G. and Chung, In and Mao, Lingling and Chen, Michelle and Wasielewski, Michael R. and Wang, Liduo and Kanatzidis, Mercouri G.},
abstractNote = {Semiconducting halide perovskites are a group of materials with exciting photoelectronic properties. Compared to the widely studied hybrid organic–inorganic perovskites, the all-inorganic derivatives are less well understood even as they promise high inherent stability. At the moment, such materials are limited due to the fact that there is a very narrow choice of inorganic cations that can stabilize the desirable perovskite structure. Herein we report on the synthesis and characterization of novel all-inorganic tin-based perovskites and perovskitoids that can be stabilized by the heteroleptic coordination of chloride and iodide anions, Cs2SnCl2I2 (1) and Cs2.38Rb1.62Sn3Cl8I2 (2), consist of two-dimensional (2D) layers of [SnCl4I2]4– octahedra with different connectivity modes. Compound 1 is an n = 1 Ruddlesden–Popper type perovskite adopting the tetragonal archetype structure (I4/mmm space group; a = 5.5905(3) Å, c = 18.8982(13) Å), while compound 2 crystallizes as an orthorhombic modification (Cmcm space group; a = 5.6730(11) Å, b = 25.973(5) Å, c = 16.587(3) Å) with corrugated layers. The crystal chemistry changes drastically when Cs+ is replaced by the smaller Rb+ cation which leads to the isolation of the low dimensional compounds Rb3SnCl3I2 (3a), Rb3SnCl2.33I2.67 (3b) and Rb7Sn4.25Cl12I3.5 (4), thus illustrating the importance of the A-cation size in the formation of perovskites. The 2D perovskites show wide band gaps and relatively large resistivities, associated with their chemical stability against the oxidation of Sn2+. The chemical stability is coupled with remarkable electronic properties that derive from the perovskite structure. DFT calculations suggest that both compounds are direct band gap semiconductors with large bandwidths, consistently with the experimentally determined band gaps of Eg = 2.62 and 2.81 eV for 1 and 2, respectively. The combination of stability and favorable electronic structure in heteroleptic-halide perovskites presents a new direction toward the realization of functional devices made exclusively from inorganic perovskites.},
doi = {10.1021/acs.chemmater.8b02232},
journal = {Chemistry of Materials},
number = 14,
volume = 30,
place = {United States},
year = {Wed Jun 20 00:00:00 EDT 2018},
month = {Wed Jun 20 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Metal halide perovskites for energy applications
journal, May 2016


Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes
journal, May 2016


Lead iodide perovskite light-emitting field-effect transistor
journal, June 2015

  • Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8383

Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy
journal, July 2017

  • Wei, Haotong; DeSantis, Dylan; Wei, Wei
  • Nature Materials, Vol. 16, Issue 8
  • DOI: 10.1038/nmat4927

Bright light-emitting diodes based on organometal halide perovskite
journal, August 2014

  • Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling
  • Nature Nanotechnology, Vol. 9, Issue 9
  • DOI: 10.1038/nnano.2014.149

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors
journal, April 2015

  • Zhu, Haiming; Fu, Yongping; Meng, Fei
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4271

White-Light Emission and Structural Distortion in New Corrugated Two-Dimensional Lead Bromide Perovskites
journal, March 2017

  • Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C.
  • Journal of the American Chemical Society, Vol. 139, Issue 14
  • DOI: 10.1021/jacs.7b01312

Tunable White-Light Emission in Single-Cation-Templated Three-Layered 2D Perovskites (CH 3 CH 2 NH 3 ) 4 Pb 3 Br 10– x Cl x
journal, August 2017

  • Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C.
  • Journal of the American Chemical Society, Vol. 139, Issue 34
  • DOI: 10.1021/jacs.7b06143

Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells
journal, June 2017


Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design
journal, March 2016


High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells
journal, July 2016

  • Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe
  • Nature, Vol. 536, Issue 7616
  • DOI: 10.1038/nature18306

A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability
journal, September 2014

  • Smith, Ian C.; Hoke, Eric T.; Solis-Ibarra, Diego
  • Angewandte Chemie, Vol. 126, Issue 42
  • DOI: 10.1002/ange.201406466

Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite
journal, June 2015

  • Conings, Bert; Drijkoningen, Jeroen; Gauquelin, Nicolas
  • Advanced Energy Materials, Vol. 5, Issue 15
  • DOI: 10.1002/aenm.201500477

Addictive-assisted construction of all-inorganic CsSnIBr 2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K
journal, January 2016

  • Li, Wenzhe; Li, Jiangwei; Li, Jiaoli
  • Journal of Materials Chemistry A, Vol. 4, Issue 43
  • DOI: 10.1039/C6TA08332C

Solar Cells: Heterojunction-Depleted Lead-Free Perovskite Solar Cells with Coarse-Grained B- γ -CsSnI 3 Thin Films (Adv. Energy Mater. 24/2016)
journal, December 2016

  • Wang, Ning; Zhou, Yuanyuan; Ju, Ming-Gang
  • Advanced Energy Materials, Vol. 6, Issue 24
  • DOI: 10.1002/aenm.201670137

Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells
journal, January 2017

  • Song, Tze-Bin; Yokoyama, Takamichi; Stoumpos, Constantinos C.
  • Journal of the American Chemical Society, Vol. 139, Issue 2
  • DOI: 10.1021/jacs.6b10734

All-solid-state dye-sensitized solar cells with high efficiency
journal, May 2012

  • Chung, In; Lee, Byunghong; He, Jiaqing
  • Nature, Vol. 485, Issue 7399, p. 486-489
  • DOI: 10.1038/nature11067

CsSnI3 : Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions
journal, May 2012

  • Chung, In; Song, Jung-Hwan; Im, Jino
  • Journal of the American Chemical Society, Vol. 134, Issue 20, p. 8579-8587
  • DOI: 10.1021/ja301539s

Crystal Growth of the Perovskite Semiconductor CsPbBr 3 : A New Material for High-Energy Radiation Detection
journal, June 2013

  • Stoumpos, Constantinos C.; Malliakas, Christos D.; Peters, John A.
  • Crystal Growth & Design, Vol. 13, Issue 7
  • DOI: 10.1021/cg400645t

Bismuth Incorporation Stabilized α-CsPbI 3 for Fully Inorganic Perovskite Solar Cells
journal, September 2017


Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI 3
journal, August 2017

  • Ke, Weijun; Stoumpos, Constantinos C.; Zhu, Menghua
  • Science Advances, Vol. 3, Issue 8
  • DOI: 10.1126/sciadv.1701293

Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties
journal, July 2013

  • Stoumpos, Constantinos C.; Malliakas, Christos D.; Kanatzidis, Mercouri G.
  • Inorganic Chemistry, Vol. 52, Issue 15, p. 9019-9038
  • DOI: 10.1021/ic401215x

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3 , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
journal, February 2015

  • Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I.
  • Nano Letters, Vol. 15, Issue 6
  • DOI: 10.1021/nl5048779

Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells
journal, March 2013

  • Noh, Jun Hong; Im, Sang Hyuk; Heo, Jin Hyuck
  • Nano Letters, Vol. 13, Issue 4, p. 1764-1769
  • DOI: 10.1021/nl400349b

Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight
journal, January 2015

  • Misra, Ravi K.; Aharon, Sigalit; Li, Baili
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 3
  • DOI: 10.1021/jz502642b

The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors
journal, September 2015


Interface engineering of highly efficient perovskite solar cells
journal, July 2014


High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide
journal, May 2016


OLEX2 : a complete structure solution, refinement and analysis program
journal, January 2009

  • Dolomanov, Oleg V.; Bourhis, Luc J.; Gildea, Richard J.
  • Journal of Applied Crystallography, Vol. 42, Issue 2
  • DOI: 10.1107/S0021889808042726

Crystallographic Computing System JANA2006: General features
journal, January 2014

  • Petříček, Václav; Dušek, Michal; Palatinus, Lukáš
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 229, Issue 5
  • DOI: 10.1515/zkri-2014-1737

Principles and Techniques of Diffuse-Reflectance Spectroscopy
journal, July 1963

  • Kortüm, G.; Braun, W.; Herzog, G.
  • Angewandte Chemie International Edition in English, Vol. 2, Issue 7
  • DOI: 10.1002/anie.196303331

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
journal, April 2008


High-throughput electronic band structure calculations: Challenges and tools
journal, August 2010


The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648X/aa680e

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


Phase Diagrams of Quasibinary Systems of the Type: ABX 3 — A′BX 3 ; ABX 3 — AB′X 3 , and ABX 3 — ABX′ 3 ; X = Halogen
journal, January 1992


�ber die Struktur des K2NiF4
journal, January 1953


Crystal preparation and properties of cesium tin(II) trihalides
journal, March 1974

  • Scaife, David E.; Weller, Paul F.; Fisher, Wayne G.
  • Journal of Solid State Chemistry, Vol. 9, Issue 3, p. 308-314
  • DOI: 10.1016/0022-4596(74)90088-7

Structure–Band Gap Relationships in Hexagonal Polytypes and Low-Dimensional Structures of Hybrid Tin Iodide Perovskites
journal, December 2016


Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas
journal, April 2015


Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA) x (FA) 1– x PbI 3 Hybrid Perovskites from Solid-State NMR
journal, September 2017

  • Kubicki, Dominik J.; Prochowicz, Daniel; Hofstetter, Albert
  • Journal of the American Chemical Society, Vol. 139, Issue 40
  • DOI: 10.1021/jacs.7b07223

Cluster formation in Cs2Sn6Br3F11
journal, January 1992

  • Abrahams, Isaac; Donaldson, John D.; Grimes, Susan M.
  • Journal of the Chemical Society, Dalton Transactions, Issue 4
  • DOI: 10.1039/dt9920000669

Nonlinear Optical Crystal Rb 4 Sn 3 Cl 2 Br 8 : Synthesis, Structure, and Characterization
journal, December 2017


Solid-State Physics Perspective on Hybrid Perovskite Semiconductors
journal, April 2015

  • Even, Jacky; Pedesseau, Laurent; Katan, Claudine
  • The Journal of Physical Chemistry C, Vol. 119, Issue 19
  • DOI: 10.1021/acs.jpcc.5b00695

Semiconducting CsSnBr 3
journal, February 1993


Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3 , CsSnBr 3 , and CsSnI 3
journal, October 2013


Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors
journal, April 2016

  • Stoumpos, Constantinos C.; Cao, Duyen H.; Clark, Daniel J.
  • Chemistry of Materials, Vol. 28, Issue 8, p. 2852-2867
  • DOI: 10.1021/acs.chemmater.6b00847

Role of Organic Counterion in Lead- and Tin-Based Two-Dimensional Semiconducting Iodide Perovskites and Application in Planar Solar Cells
journal, October 2016


Conducting tin halides with a layered organic-based perovskite structure
journal, June 1994

  • Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.
  • Nature, Vol. 369, Issue 6480, p. 467-469
  • DOI: 10.1038/369467a0

Growth and optical, magnetic and transport properties of (C4H9NH3)2MCl4 organic-inorganic hybrid films (M = Cu, Sn)
journal, October 2005


Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality
journal, January 2017

  • Xiao, Zewen; Meng, Weiwei; Wang, Jianbo
  • Materials Horizons, Vol. 4, Issue 2
  • DOI: 10.1039/C6MH00519E

A critical review on tin halide perovskite solar cells
journal, January 2017

  • Konstantakou, Maria; Stergiopoulos, Thomas
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00929A

Works referencing / citing this record:

Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs 2 PbI 4 with a Ruddlesden–Popper structure
journal, January 2019

  • Ding, Yu-Feng; Zhao, Qian-Qi; Yu, Zhuo-Liang
  • Journal of Materials Chemistry C, Vol. 7, Issue 24
  • DOI: 10.1039/c9tc02267h