DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells

Abstract

A combination of cell testing and electrochemical-thermal modeling is used to investigate extreme fast charging (XFC) performance for cells with a low loading of 1.5 mAk.cm(-2) and moderate loading of 2.5 mAk.cm(-2). Cells with a low loading of 1.5 mAk.cm(-2) withstand XFC performance remarkably well even up to 9C constant current (CC) charging with high charge capacity, high coulombic efficiency and very little apparent lithium plating. For a moderate loading of 2.5 mAk.cm(-2), the 6C CC charge capacity is poor with significant amounts of visually observed lithium plating. Simulated electrolyte transport properties are revealed to be insufficient and majorly set limitations for XFC performance in case of the moderate and the only simulated higher loadings (>2.5 mAk.cm(-2)). Charging at elevated temperature is shown to be an effective strategy for moderate loading cells enabling good 10-min charge capacity, high coulombic efficiency, and mitigating lithium plating. Lastly, an electrochemical model is used to investigate strategies for enabling 4-6C CC charging for cells incorporating loading beyond 3 mAk.cm(-2). As a result, the combination of an increased cell temperature, reduced electrode tortuosity, and enhanced ion-transport in the electrolyte are most likely required to facilitate XFC for state of the art and future high energymore » lithium-ion batteries. (C) 2020 Elsevier Ltd. All rights reserved.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [3];  [3];  [3];  [3];  [3];  [3]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. Idaho National Lab. (INL), Idaho Falls, ID (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Idaho National Laboratory (INL), Idaho Falls, ID (United States); National Renewable Energy Laboratory (NREL), Golden, CO (United States); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V). Applied Battery Research and Extreme Fast Charge Programs; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1599059
Alternate Identifier(s):
OSTI ID: 1601576; OSTI ID: 1632286; OSTI ID: 1702103
Report Number(s):
INL/JOU-19-56185-Rev000; NREL/JA-5400-75243
Journal ID: ISSN 0013-4686; TRN: US2103419
Grant/Contract Number:  
AC07-05ID14517; AC36-08GO28308; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Electrochimica Acta
Additional Journal Information:
Journal Volume: 337; Journal Issue: C; Journal ID: ISSN 0013-4686
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; extreme fast charging; lithium-ion batteries; electrolyte transport; lithium-plating; high-energy density cells; electrode; electrolyte; fast charge; lithium ion

Citation Formats

Colclasure, Andrew M., Tanim, Tanvir R., Jansen, Andrew N., Trask, Stephen E., Dunlop, Alison R., Polzin, Bryant J., Bloom, Ira, Robertson, Dave, Flores, LeRoy, Evans, Michael C., Dufek, Eric J., and Smith, Kandler. Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells. United States: N. p., 2020. Web. doi:10.1016/j.electacta.2020.135854.
Colclasure, Andrew M., Tanim, Tanvir R., Jansen, Andrew N., Trask, Stephen E., Dunlop, Alison R., Polzin, Bryant J., Bloom, Ira, Robertson, Dave, Flores, LeRoy, Evans, Michael C., Dufek, Eric J., & Smith, Kandler. Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells. United States. https://doi.org/10.1016/j.electacta.2020.135854
Colclasure, Andrew M., Tanim, Tanvir R., Jansen, Andrew N., Trask, Stephen E., Dunlop, Alison R., Polzin, Bryant J., Bloom, Ira, Robertson, Dave, Flores, LeRoy, Evans, Michael C., Dufek, Eric J., and Smith, Kandler. Tue . "Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells". United States. https://doi.org/10.1016/j.electacta.2020.135854. https://www.osti.gov/servlets/purl/1599059.
@article{osti_1599059,
title = {Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells},
author = {Colclasure, Andrew M. and Tanim, Tanvir R. and Jansen, Andrew N. and Trask, Stephen E. and Dunlop, Alison R. and Polzin, Bryant J. and Bloom, Ira and Robertson, Dave and Flores, LeRoy and Evans, Michael C. and Dufek, Eric J. and Smith, Kandler},
abstractNote = {A combination of cell testing and electrochemical-thermal modeling is used to investigate extreme fast charging (XFC) performance for cells with a low loading of 1.5 mAk.cm(-2) and moderate loading of 2.5 mAk.cm(-2). Cells with a low loading of 1.5 mAk.cm(-2) withstand XFC performance remarkably well even up to 9C constant current (CC) charging with high charge capacity, high coulombic efficiency and very little apparent lithium plating. For a moderate loading of 2.5 mAk.cm(-2), the 6C CC charge capacity is poor with significant amounts of visually observed lithium plating. Simulated electrolyte transport properties are revealed to be insufficient and majorly set limitations for XFC performance in case of the moderate and the only simulated higher loadings (>2.5 mAk.cm(-2)). Charging at elevated temperature is shown to be an effective strategy for moderate loading cells enabling good 10-min charge capacity, high coulombic efficiency, and mitigating lithium plating. Lastly, an electrochemical model is used to investigate strategies for enabling 4-6C CC charging for cells incorporating loading beyond 3 mAk.cm(-2). As a result, the combination of an increased cell temperature, reduced electrode tortuosity, and enhanced ion-transport in the electrolyte are most likely required to facilitate XFC for state of the art and future high energy lithium-ion batteries. (C) 2020 Elsevier Ltd. All rights reserved.},
doi = {10.1016/j.electacta.2020.135854},
journal = {Electrochimica Acta},
number = C,
volume = 337,
place = {United States},
year = {Tue Feb 04 00:00:00 EST 2020},
month = {Tue Feb 04 00:00:00 EST 2020}
}

Journal Article:

Citation Metrics:
Cited by: 110 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrochemical Modeling of Lithium-Ion Positive Electrodes during Hybrid Pulse Power Characterization Tests
journal, January 2008

  • Dees, Dennis; Gunen, Evren; Abraham, Daniel
  • Journal of The Electrochemical Society, Vol. 155, Issue 8
  • DOI: 10.1149/1.2939211

In-Situ Detection of Lithium Plating Using High Precision Coulometry
journal, January 2015

  • Burns, J. C.; Stevens, D. A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0621506jes

Quasi-Isothermal External Short Circuit Tests Applied to Lithium-Ion Cells: Part II. Modeling and Simulation
journal, January 2019

  • Rheinfeld, Alexander; Sturm, Johannes; Noel, Andreas
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.0071902jes

Simulation of temperature rise in Li-ion cells at very high currents
journal, December 2014


Promising Routes to a High Li + Transference Number Electrolyte for Lithium Ion Batteries
journal, October 2017


A Fast Rechargeable Lithium-Ion Battery at Subfreezing Temperatures
journal, January 2016

  • Wang, Chao-Yang; Xu, Terrence; Ge, Shanhai
  • Journal of The Electrochemical Society, Vol. 163, Issue 9
  • DOI: 10.1149/2.0681609jes

Enabling fast charging – A battery technology gap assessment
journal, November 2017


Coral-like directional porosity lithium ion battery cathodes by ice templating
journal, January 2018

  • Huang, Chun; Grant, Patrick S.
  • Journal of Materials Chemistry A, Vol. 6, Issue 30
  • DOI: 10.1039/C8TA05049J

Full Cell Parameterization of a High-Power Lithium-Ion Battery for a Physico-Chemical Model: Part I. Physical and Electrochemical Parameters
journal, January 2018

  • Schmalstieg, Johannes; Rahe, Christiane; Ecker, Madeleine
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0321816jes

Transport Properties of LiPF[sub 6]-Based Li-Ion Battery Electrolytes
journal, January 2005

  • Valo̸en, Lars Ole; Reimers, Jan N.
  • Journal of The Electrochemical Society, Vol. 152, Issue 5
  • DOI: 10.1149/1.1872737

Investigation of the temperature dependence of lithium plating onset conditions in commercial Li-ion batteries
journal, March 2019


The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries
journal, March 2013


Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities
journal, November 2017


Resolving the Discrepancy in Tortuosity Factor Estimation for Li-Ion Battery Electrodes through Micro-Macro Modeling and Experiment
journal, January 2018

  • Usseglio-Viretta, Francois L. E.; Colclasure, Andrew; Mistry, Aashutosh N.
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.0731814jes

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Electrochemical Estimation and Control for Lithium-Ion Battery Health-Aware Fast Charging
journal, August 2018

  • Zou, Changfu; Hu, Xiaosong; Wei, Zhongbao
  • IEEE Transactions on Industrial Electronics, Vol. 65, Issue 8
  • DOI: 10.1109/TIE.2017.2772154

Modeling and simulation of inhomogeneities in a 18650 nickel-rich, silicon-graphite lithium-ion cell during fast charging
journal, February 2019


Requirements for Enabling Extreme Fast Charging of High Energy Density Li-Ion Cells while Avoiding Lithium Plating
journal, January 2019

  • Colclasure, Andrew M.; Dunlop, Alison R.; Trask, Stephen E.
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.0451908jes

Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles
journal, September 2006


Experimental and Modeling Analysis of Graphite Electrodes with Various Thicknesses and Porosities for High-Energy-Density Li-Ion Batteries
journal, January 2018

  • Malifarge, Simon; Delobel, Bruno; Delacourt, Charles
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.0301807jes

Galvanostatic Intermittent Titration and Performance Based Analysis of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode
journal, January 2017

  • Verma, Ankit; Smith, Kandler; Santhanagopalan, Shriram
  • Journal of The Electrochemical Society, Vol. 164, Issue 13
  • DOI: 10.1149/2.1701713jes

Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes
journal, November 2015

  • Gallagher, Kevin G.; Trask, Stephen E.; Bauer, Christoph
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0321602jes

Electrochemical model based charge optimization for lithium-ion batteries
journal, May 2016


Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO 4
journal, August 2016


Enabling fast charging – Battery thermal considerations
journal, November 2017


Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries
journal, July 2016

  • Billaud, Juliette; Bouville, Florian; Magrini, Tommaso
  • Nature Energy, Vol. 1, Issue 8
  • DOI: 10.1038/nenergy.2016.97

A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies
journal, January 2019

  • Harlow, Jessie E.; Ma, Xiaowei; Li, Jing
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.0981913jes

Electrochemical Characterization of High Energy Density Graphite Electrodes Made by Freeze-Casting
journal, July 2018

  • Amin, Ruhul; Delattre, Benjamin; Tomsia, Antoni P.
  • ACS Applied Energy Materials, Vol. 1, Issue 9
  • DOI: 10.1021/acsaem.8b00962

Rapid restoration of electric vehicle battery performance while driving at cold temperatures
journal, December 2017


Analysis of Rate-Limiting Factors in Thick Electrodes for Electric Vehicle Applications
journal, January 2018

  • Lee, Byoung-Sun; Wu, Zhaohui; Petrova, Victoria
  • Journal of The Electrochemical Society, Vol. 165, Issue 3
  • DOI: 10.1149/2.0571803jes

Impact of Pore Tortuosity on Electrode Kinetics in Lithium Battery Electrodes: Study in Directionally Freeze-Cast LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA)
journal, January 2018

  • Delattre, Benjamin; Amin, Ruhul; Sander, Jonathan
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.1321802jes

Study of the charging process of a LiCoO2-based Li-ion battery
journal, October 2006


Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes
journal, June 2019


Lithium-ion battery structure that self-heats at low temperatures
journal, January 2016

  • Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai
  • Nature, Vol. 529, Issue 7587
  • DOI: 10.1038/nature16502

Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures
journal, November 2016


A Study of Three Ester Co-Solvents in Lithium-Ion Cells
journal, January 2017

  • Ma, Xiaowei; Arumugam, Rajalakshmi S.; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0411714jes

A study of highly conductive ester co-solvents in Li[Ni0.5Mn0.3Co0.2]O2/Graphite pouch cells
journal, April 2018


The effect of the charging protocol on the cycle life of a Li-ion battery
journal, October 2006


Fast charging of lithium-ion batteries at all temperatures
journal, June 2018

  • Yang, Xiao-Guang; Zhang, Guangsheng; Ge, Shanhai
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 28
  • DOI: 10.1073/pnas.1807115115

A Study of the Physical Properties of Li-Ion Battery Electrolytes Containing Esters
journal, January 2018

  • Logan, E. R.; Tonita, Erin M.; Gering, K. L.
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0271802jes

Increasing the Discharge Rate Capability of Lithium-Ion Cells with Laser-Structured Graphite Anodes: Modeling and Simulation
journal, January 2018

  • Habedank, Jan B.; Kraft, Ludwig; Rheinfeld, Alexander
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.1181807jes

Communication—Analysis of Thick Co-Extruded Cathodes for Higher-Energy-and-Power Lithium-Ion Batteries
journal, January 2017

  • Cobb, Corie L.; Solberg, Scott E.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0101707jes

Exploring Classes of Co-Solvents for Fast-Charging Lithium-Ion Cells
journal, January 2018

  • Hall, David S.; Eldesoky, Ahmed; Logan, E. R.
  • Journal of The Electrochemical Society, Vol. 165, Issue 10
  • DOI: 10.1149/2.1351810jes

Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries
journal, October 2018


Extreme Fast Charge Challenges for Lithium-Ion Battery: Variability and Positive Electrode Issues
journal, January 2019

  • Tanim, Tanvir R.; Dufek, Eric J.; Evans, Michael
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0731910jes