DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems

Abstract

Here, we present a probabilistic deep learning methodology that enables the construction of predictive data-driven surrogates for stochastic systems. Leveraging recent advances in variational inference with implicit distributions, we put forth a statistical inference framework that enables the end-to-end training of surrogate models on paired input–output observations that may be stochastic in nature, originate from different information sources of variable fidelity, or be corrupted by complex noise processes. The resulting surrogates can accommodate high-dimensional inputs and outputs and are able to return predictions with quantified uncertainty. Furthermore, the effectiveness our approach is demonstrated through a series of canonical studies, including the regression of noisy data, multi-fidelity modeling of stochastic processes, and uncertainty propagation in high-dimensional dynamical systems.

Authors:
 [1]; ORCiD logo [1]
  1. Univ. of Pennsylvania, Philadelphia, PA (United States)
Publication Date:
Research Org.:
Univ. of Pennsylvania, Philadelphia, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
OSTI Identifier:
1595804
Grant/Contract Number:  
SC0019116; HR00111890034
Resource Type:
Accepted Manuscript
Journal Name:
Computational Mechanics
Additional Journal Information:
Journal Volume: 64; Journal Issue: 2; Related Information: https://github.com/PredictiveIntelligenceLab/CADGMs; Journal ID: ISSN 0178-7675
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; Probabilistic deep learning; Generative adversarial networks; Variational inference; Multi- delity modeling; Data-driven surrogates

Citation Formats

Yang, Yibo, and Perdikaris, Paris. Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems. United States: N. p., 2019. Web. doi:10.1007/s00466-019-01718-y.
Yang, Yibo, & Perdikaris, Paris. Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems. United States. https://doi.org/10.1007/s00466-019-01718-y
Yang, Yibo, and Perdikaris, Paris. Tue . "Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems". United States. https://doi.org/10.1007/s00466-019-01718-y. https://www.osti.gov/servlets/purl/1595804.
@article{osti_1595804,
title = {Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems},
author = {Yang, Yibo and Perdikaris, Paris},
abstractNote = {Here, we present a probabilistic deep learning methodology that enables the construction of predictive data-driven surrogates for stochastic systems. Leveraging recent advances in variational inference with implicit distributions, we put forth a statistical inference framework that enables the end-to-end training of surrogate models on paired input–output observations that may be stochastic in nature, originate from different information sources of variable fidelity, or be corrupted by complex noise processes. The resulting surrogates can accommodate high-dimensional inputs and outputs and are able to return predictions with quantified uncertainty. Furthermore, the effectiveness our approach is demonstrated through a series of canonical studies, including the regression of noisy data, multi-fidelity modeling of stochastic processes, and uncertainty propagation in high-dimensional dynamical systems.},
doi = {10.1007/s00466-019-01718-y},
journal = {Computational Mechanics},
number = 2,
volume = 64,
place = {United States},
year = {Tue May 21 00:00:00 EDT 2019},
month = {Tue May 21 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Multi-fidelity Gaussian process regression for prediction of random fields
journal, May 2017


Multi-fidelity Gaussian process regression for prediction of random fields
journal, May 2017


Active Learning with Statistical Models
journal, January 1996

  • Cohn, D. A.; Ghahramani, Z.; Jordan, M. I.
  • Journal of Artificial Intelligence Research, Vol. 4
  • DOI: 10.1613/jair.295

DDDAS-based multi-fidelity simulation framework for supply chain systems
journal, February 2010


Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping
journal, November 2008

  • Robinson, T. D.; Eldred, M. S.; Willcox, K. E.
  • AIAA Journal, Vol. 46, Issue 11
  • DOI: 10.2514/1.36043

Deep learning
journal, May 2015

  • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14539

Bayesian inference with optimal maps
journal, October 2012

  • El Moselhy, Tarek A.; Marzouk, Youssef M.
  • Journal of Computational Physics, Vol. 231, Issue 23
  • DOI: 10.1016/j.jcp.2012.07.022

Multifidelity Information Fusion Algorithms for High-Dimensional Systems and Massive Data sets
journal, January 2016

  • Perdikaris, Paris; Venturi, Daniele; Karniadakis, George Em
  • SIAM Journal on Scientific Computing, Vol. 38, Issue 4
  • DOI: 10.1137/15M1055164

Information Theory and an Extension of the Maximum Likelihood Principle
book, January 1998


Deep Learning
text, January 2018


Multi-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine Under an Extreme Gust
conference, June 2014

  • Padron, Andres S.; Alonso, Juan J.; Palacios, Francisco
  • 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
  • DOI: 10.2514/6.2014-3013

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules.
text, January 2018

  • Gómez-Bombarelli, Rafael; Wei, Jennifer N.; Duvenaud, David
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.34134

Predictive collective variable discovery with deep Bayesian models
journal, January 2019

  • Schöberl, Markus; Zabaras, Nicholas; Koutsourelakis, Phaedon-Stelios
  • The Journal of Chemical Physics, Vol. 150, Issue 2
  • DOI: 10.1063/1.5058063

Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond
journal, May 2016

  • Perdikaris, Paris; Karniadakis, George Em
  • Journal of The Royal Society Interface, Vol. 13, Issue 118
  • DOI: 10.1098/rsif.2015.1107

A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime
journal, November 2019

  • Grigo, Constantin; Koutsourelakis, Phaedon-Stelios
  • Journal of Computational Physics, Vol. 397
  • DOI: 10.1016/j.jcp.2019.05.053

Understanding deep convolutional networks
journal, April 2016

  • Mallat, Stéphane
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, Issue 2065
  • DOI: 10.1098/rsta.2015.0203

Variational Inference: A Review for Statisticians
journal, July 2016

  • Blei, David M.; Kucukelbir, Alp; McAuliffe, Jon D.
  • Journal of the American Statistical Association, Vol. 112, Issue 518
  • DOI: 10.1080/01621459.2017.1285773

Active Learning with Statistical Models
text, January 1996


Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
journal, January 2018

  • Gómez-Bombarelli, Rafael; Wei, Jennifer N.; Duvenaud, David
  • ACS Central Science, Vol. 4, Issue 2
  • DOI: 10.1021/acscentsci.7b00572

Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping
journal, November 2008

  • Robinson, T. D.; Eldred, M. S.; Willcox, K. E.
  • AIAA Journal, Vol. 46, Issue 11
  • DOI: 10.2514/1.36043

Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
conference, June 2012

  • Eldred, Michael; Burkardt, John
  • 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition
  • DOI: 10.2514/6.2009-976

A Stochastic Collocation Algorithm with Multifidelity Models
journal, January 2014

  • Narayan, Akil; Gittelson, Claude; Xiu, Dongbin
  • SIAM Journal on Scientific Computing, Vol. 36, Issue 2
  • DOI: 10.1137/130929461

Optimal Model Management for Multifidelity Monte Carlo Estimation
journal, January 2016

  • Peherstorfer, Benjamin; Willcox, Karen; Gunzburger, Max
  • SIAM Journal on Scientific Computing, Vol. 38, Issue 5
  • DOI: 10.1137/15M1046472

Multifidelity importance sampling
journal, March 2016

  • Peherstorfer, Benjamin; Cui, Tiangang; Marzouk, Youssef
  • Computer Methods in Applied Mechanics and Engineering, Vol. 300
  • DOI: 10.1016/j.cma.2015.12.002

Multi-fidelity optimization via surrogate modelling
journal, September 2007

  • Forrester, Alexander I. J.; Sóbester, András; Keane, Andy J.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 463, Issue 2088
  • DOI: 10.1098/rspa.2007.1900

Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme
journal, September 2014

  • Biehler, Jonas; Gee, Michael W.; Wall, Wolfgang A.
  • Biomechanics and Modeling in Mechanobiology, Vol. 14, Issue 3
  • DOI: 10.1007/s10237-014-0618-0

A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials
journal, September 2010


Taking the Human Out of the Loop: A Review of Bayesian Optimization
journal, January 2016


Graphical Models, Exponential Families, and Variational Inference
journal, January 2007

  • Wainwright, Martin J.; Jordan, Michael I.
  • Foundations and Trends® in Machine Learning, Vol. 1, Issue 1–2
  • DOI: 10.1561/2200000001

Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models
journal, November 2001

  • Alexandrov, Natalia M.; Lewis, Robert Michael; Gumbert, Clyde R.
  • Journal of Aircraft, Vol. 38, Issue 6
  • DOI: 10.2514/2.2877

Computational Aspects of Stochastic Collocation with Multifidelity Models
journal, January 2014

  • Zhu, Xueyu; Narayan, Akil; Xiu, Dongbin
  • SIAM/ASA Journal on Uncertainty Quantification, Vol. 2, Issue 1
  • DOI: 10.1137/130949154

Extracting and composing robust features with denoising autoencoders
conference, January 2008

  • Vincent, Pascal; Larochelle, Hugo; Bengio, Yoshua
  • Proceedings of the 25th international conference on Machine learning - ICML '08
  • DOI: 10.1145/1390156.1390294

Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification
journal, May 2013

  • Bilionis, Ilias; Zabaras, Nicholas; Konomi, Bledar A.
  • Journal of Computational Physics, Vol. 241
  • DOI: 10.1016/j.jcp.2013.01.011

Variational Inference: A Review for Statisticians
text, January 2016


Multi-fidelity optimization for sheet metal forming process
journal, December 2010

  • Sun, Guangyong; Li, Guangyao; Zhou, Shiwei
  • Structural and Multidisciplinary Optimization, Vol. 44, Issue 1
  • DOI: 10.1007/s00158-010-0596-5

Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach
journal, August 2016

  • Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.
  • Nature Materials, Vol. 15, Issue 10
  • DOI: 10.1038/nmat4717

Variational Inference: A Review for Statisticians
text, January 2017


Variational Inference: A Review for Statisticians
journal, July 2016

  • Blei, David M.; Kucukelbir, Alp; McAuliffe, Jon D.
  • Journal of the American Statistical Association, Vol. 112, Issue 518
  • DOI: 10.1080/01621459.2017.1285773

Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
preprint, January 2017


Active Learning with Statistical Models
text, January 1996


Variational Inference: A Review for Statisticians
text, January 2017


Enabling Dark Energy Science with Deep Generative Models of Galaxy Images
journal, February 2017

  • Ravanbakhsh, Siamak; Lanusse, Francois; Mandelbaum, Rachel
  • Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, Issue 1
  • DOI: 10.1609/aaai.v31i1.10755