DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of the neoclassical ambipolar electric field in ion-root plasmas on W7-X

Abstract

In this paper, the role of the radial electric field in high-performance ion-root plasmas on Wendelstein 7-X (W7-X) is examined and compared with neoclassical predictions. The W7-X stellarator is the world's first large-scale optimized stellarator. One of the important targets chosen for optimization during the W7-X design process was the reduction of core neoclassical heat transport. This optimization was targeted for reactor-relevant high-density plasmas with Te ≈ Ti in which the neoclassical ambipolar radial electric field is expected to be negative throughout the plasmas core. Measurements of the core radial electric field (Er) have confirmed that ion-root conditions (negative Er in the plasma core) have been achieved in W7-X with high-density plasmas and central ECRH. These measured Er profiles agree well with the neoclassical ambipolar Er predicted by the code SFINCS. This good agreement provides confidence in the validity of neoclassical calculations in high-density ion-root conditions, and enables initial studies on the role of neoclassical transport in the optimized high-density regime of W7-X. Profile measurements of electron temperature (Te), ion temperature (Ti) and electron density (ne) along with approximations for the average value of Zeff have been used as inputs to the SFINCS code to calculate the ambipolar Er profilemore » along with neoclassical ion and electron energy flux profiles (QNCi, QNCe). Finally the total experimental energy input to the plasma from ECRH heating has been compared to the neoclassical energy fluxes to provide a first estimate for the fraction of transport that can be attributed to neoclassical processes in reactor-relevant high-density ion-root conditions.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [2]; ORCiD logo [2]; ORCiD logo [2];  [2];  [2];  [2];  [2];  [2];  [1];  [2];  [2];  [2];  [4];  [2];  [2];  [2];  [5] more »; ORCiD logo [2];  [2]; ORCiD logo [6]; ORCiD logo [2];  [2]; ORCiD logo [2];  [7];  [2];  [2];  [2];  [8];  [2]; ORCiD logo [3];  [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2];  [2] « less
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Max-Planck-Inst. für Plasmaphysik, Greifswald (Germany)
  3. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain). Lab. Nacional de Fusión
  4. Lab. for Plasma Physics, Brussels (Belgium)
  5. Univ. of Maryland, College Park, MD (United States)
  6. Forschungszentrum Jülich (Germany)
  7. National Inst. for Fusion Science, Toki (Japan)
  8. Auburn Univ., AL (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE; European Commission (EC)
Contributing Org.:
The W7-X Team
OSTI Identifier:
1595801
Alternate Identifier(s):
OSTI ID: 1668775
Report Number(s):
2020-_157
Journal ID: ISSN 0029-5515; TRN: US2102045
Grant/Contract Number:  
AC02-09CH11466; 633053
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 60; Journal Issue: 3; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Pablant, Novimir Antoniuk, Langenberg, Andreas, Alonso, J. Arturo, Baldzuhn, Jürgen, Beidler, Craig D., Bozhenkov, Sergey A., Burhenn, Rainer, Brunner, Kai Jakob, Dinklage, Andreas, Fuchert, Golo, Ford, Oliver P., Gates, David A., Geiger, Joachim, Hirsch, Matthias, Höfel, Udo, Kazakov, Yevgen, Knauer, Jens P., Krychowiak, Maciej, Laqua, Heinrich, Landreman, M., Lazerson, Samuel A., Maaßberg, Henning, Marchuk, Oleksandr, Mollén, Albert, Pasch, Ekkehard, Pavone, Andrea, Satake, Shinsuke, Schröder, Timo, Smith, Hakan M., Svensson, Jakob, Traverso, Peter, Turkin, Yuriy, Velasco, Jose Luis, von Stechow, Adrian, Warmer, Felix, Weir, Gavin McCabe, Wolf, Robert C., and Zhang, Daihong. Investigation of the neoclassical ambipolar electric field in ion-root plasmas on W7-X. United States: N. p., 2020. Web. doi:10.1088/1741-4326/ab6ea8.
Pablant, Novimir Antoniuk, Langenberg, Andreas, Alonso, J. Arturo, Baldzuhn, Jürgen, Beidler, Craig D., Bozhenkov, Sergey A., Burhenn, Rainer, Brunner, Kai Jakob, Dinklage, Andreas, Fuchert, Golo, Ford, Oliver P., Gates, David A., Geiger, Joachim, Hirsch, Matthias, Höfel, Udo, Kazakov, Yevgen, Knauer, Jens P., Krychowiak, Maciej, Laqua, Heinrich, Landreman, M., Lazerson, Samuel A., Maaßberg, Henning, Marchuk, Oleksandr, Mollén, Albert, Pasch, Ekkehard, Pavone, Andrea, Satake, Shinsuke, Schröder, Timo, Smith, Hakan M., Svensson, Jakob, Traverso, Peter, Turkin, Yuriy, Velasco, Jose Luis, von Stechow, Adrian, Warmer, Felix, Weir, Gavin McCabe, Wolf, Robert C., & Zhang, Daihong. Investigation of the neoclassical ambipolar electric field in ion-root plasmas on W7-X. United States. https://doi.org/10.1088/1741-4326/ab6ea8
Pablant, Novimir Antoniuk, Langenberg, Andreas, Alonso, J. Arturo, Baldzuhn, Jürgen, Beidler, Craig D., Bozhenkov, Sergey A., Burhenn, Rainer, Brunner, Kai Jakob, Dinklage, Andreas, Fuchert, Golo, Ford, Oliver P., Gates, David A., Geiger, Joachim, Hirsch, Matthias, Höfel, Udo, Kazakov, Yevgen, Knauer, Jens P., Krychowiak, Maciej, Laqua, Heinrich, Landreman, M., Lazerson, Samuel A., Maaßberg, Henning, Marchuk, Oleksandr, Mollén, Albert, Pasch, Ekkehard, Pavone, Andrea, Satake, Shinsuke, Schröder, Timo, Smith, Hakan M., Svensson, Jakob, Traverso, Peter, Turkin, Yuriy, Velasco, Jose Luis, von Stechow, Adrian, Warmer, Felix, Weir, Gavin McCabe, Wolf, Robert C., and Zhang, Daihong. Wed . "Investigation of the neoclassical ambipolar electric field in ion-root plasmas on W7-X". United States. https://doi.org/10.1088/1741-4326/ab6ea8. https://www.osti.gov/servlets/purl/1595801.
@article{osti_1595801,
title = {Investigation of the neoclassical ambipolar electric field in ion-root plasmas on W7-X},
author = {Pablant, Novimir Antoniuk and Langenberg, Andreas and Alonso, J. Arturo and Baldzuhn, Jürgen and Beidler, Craig D. and Bozhenkov, Sergey A. and Burhenn, Rainer and Brunner, Kai Jakob and Dinklage, Andreas and Fuchert, Golo and Ford, Oliver P. and Gates, David A. and Geiger, Joachim and Hirsch, Matthias and Höfel, Udo and Kazakov, Yevgen and Knauer, Jens P. and Krychowiak, Maciej and Laqua, Heinrich and Landreman, M. and Lazerson, Samuel A. and Maaßberg, Henning and Marchuk, Oleksandr and Mollén, Albert and Pasch, Ekkehard and Pavone, Andrea and Satake, Shinsuke and Schröder, Timo and Smith, Hakan M. and Svensson, Jakob and Traverso, Peter and Turkin, Yuriy and Velasco, Jose Luis and von Stechow, Adrian and Warmer, Felix and Weir, Gavin McCabe and Wolf, Robert C. and Zhang, Daihong},
abstractNote = {In this paper, the role of the radial electric field in high-performance ion-root plasmas on Wendelstein 7-X (W7-X) is examined and compared with neoclassical predictions. The W7-X stellarator is the world's first large-scale optimized stellarator. One of the important targets chosen for optimization during the W7-X design process was the reduction of core neoclassical heat transport. This optimization was targeted for reactor-relevant high-density plasmas with Te ≈ Ti in which the neoclassical ambipolar radial electric field is expected to be negative throughout the plasmas core. Measurements of the core radial electric field (Er) have confirmed that ion-root conditions (negative Er in the plasma core) have been achieved in W7-X with high-density plasmas and central ECRH. These measured Er profiles agree well with the neoclassical ambipolar Er predicted by the code SFINCS. This good agreement provides confidence in the validity of neoclassical calculations in high-density ion-root conditions, and enables initial studies on the role of neoclassical transport in the optimized high-density regime of W7-X. Profile measurements of electron temperature (Te), ion temperature (Ti) and electron density (ne) along with approximations for the average value of Zeff have been used as inputs to the SFINCS code to calculate the ambipolar Er profile along with neoclassical ion and electron energy flux profiles (QNCi, QNCe). Finally the total experimental energy input to the plasma from ECRH heating has been compared to the neoclassical energy fluxes to provide a first estimate for the fraction of transport that can be attributed to neoclassical processes in reactor-relevant high-density ion-root conditions.},
doi = {10.1088/1741-4326/ab6ea8},
journal = {Nuclear Fusion},
number = 3,
volume = 60,
place = {United States},
year = {Wed Jan 22 00:00:00 EST 2020},
month = {Wed Jan 22 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaks
journal, November 2014

  • Pablant, N. A.; Bell, R. E.; Bitter, M.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4891977

Core radial electric field and transport in Wendelstein 7-X plasmas
journal, February 2018

  • Pablant, N. A.; Langenberg, A.; Alonso, A.
  • Physics of Plasmas, Vol. 25, Issue 2
  • DOI: 10.1063/1.4999842

Neoclassical bootstrap current and transport in optimized stellarator configurations
journal, October 1993

  • Maassberg, H.; Lotz, W.; Nührenberg, J.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 10
  • DOI: 10.1063/1.860843

Variational bounds for transport coefficients in three‐dimensional toroidal plasmas
journal, March 1989

  • van Rij, W. I.; Hirshman, S. P.
  • Physics of Fluids B: Plasma Physics, Vol. 1, Issue 3
  • DOI: 10.1063/1.859116

Diamagnetic energy measurement during the first operational phase at the Wendelstein 7-X stellarator
journal, July 2018


Investigation of ion and electron heat transport of high- T e ECH heated discharges in the large helical device
journal, January 2016


Electrostatic potential variation on the flux surface and its impact on impurity transport
journal, March 2017


Electric field profile of a Compact Helical System Heliotron/Torsatron plasma with tangential neutral beam injection
journal, March 1991

  • Ida, K.; Yamada, H.; Iguchi, H.
  • Physics of Fluids B: Plasma Physics, Vol. 3, Issue 3
  • DOI: 10.1063/1.859594

Core electron-root confinement (CERC) in helical plasmas
journal, August 2007


Determination of radial electric field from Pfirsch–Schlüter flows in the HSX stellarator
journal, February 2017


Overview of first Wendelstein 7-X high-performance operation
journal, June 2019


Comparison of the flows and radial electric field in the HSX stellarator to neoclassical calculations
journal, December 2012


Momentum correction techniques for neoclassical transport in stellarators
journal, July 2009

  • Maaßberg, H.; Beidler, C. D.; Turkin, Y.
  • Physics of Plasmas, Vol. 16, Issue 7
  • DOI: 10.1063/1.3175328

Measurement and calculation of the radial electric field in the stellarator W7-AS
journal, June 1998


Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas
journal, April 2014

  • Landreman, M.; Smith, H. M.; Mollén, A.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4870077

Prospects of X-ray imaging spectrometers for impurity transport: Recent results from the stellarator Wendelstein 7-X (invited)
journal, October 2018

  • Langenberg, A.; Pablant, N. A.; Wegner, Th.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5036536

Overview of diagnostic performance and results for the first operation phase in Wendelstein 7-X (invited)
journal, October 2016

  • Krychowiak, M.; Adnan, A.; Alonso, A.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4964376

Control of the radial electric field shear by modification of the magnetic field configuration in LHD
journal, April 2005


Performance of Wendelstein 7-X stellarator plasmas during the first divertor operation phase
journal, August 2019

  • Wolf, R. C.; Alonso, A.; Äkäslompolo, S.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5098761

Stable stellarators with medium β and aspect ratio
journal, February 1986


Analysis of TJ-II experimental data with neoclassical formulations of the radial electric field
journal, September 2015

  • Gutiérrez-Tapia, C.; Martinell, J. J.; López-Bruna, D.
  • Plasma Physics and Controlled Fusion, Vol. 57, Issue 11
  • DOI: 10.1088/0741-3335/57/11/115004

Three-dimensional free boundary calculations using a spectral Green's function method
journal, December 1986


Experimental check of neoclassical predictions for the radial electric field in a stellarator
journal, September 2003


Charge-exchange-produced K -shell x-ray emission from Ar 16 + in a tokamak plasma with neutral-beam injection
journal, September 2005


Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence
journal, June 1996

  • Sugama, H.; Okamoto, M.; Horton, W.
  • Physics of Plasmas, Vol. 3, Issue 6
  • DOI: 10.1063/1.871922

Current status of the neutral beam heating system of W7-X
journal, October 2013


Physics and Engineering Design for Wendelstein VII-X
journal, January 1990

  • Beidler, Craig; Grieger, Günter; Herrnegger, Franz
  • Fusion Technology, Vol. 17, Issue 1
  • DOI: 10.13182/FST90-A29178

Intrinsic Ambipolarity and Rotation in Stellarators
journal, September 2008


Magnetic configuration effects on the Wendelstein 7-X stellarator
journal, May 2018


Damping of radial electric field fluctuations in the TJ-II stellarator
journal, November 2013


From W7-X to a HELIAS fusion power plant: motivation and options for an intermediate-step burning-plasma stellarator
journal, June 2016


Objectives and layout of a high-resolution x-ray imaging crystal spectrometer for the large helical device
journal, October 2010

  • Bitter, M.; Hill, K.; Gates, D.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3490016