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Abstract

This paper proposes a supervised machine learning framework for the non-intrusive model

order reduction of unsteady fluid flows to provide accurate predictions of non-stationary

state variables when the control parameter values vary. Our approach utilizes a training

process from full-order scale direct numerical simulation data projected on proper orthogo-

nal decomposition (POD) modes to achieve an artificial neural network (ANN) model with

reduced memory requirements. This data-driven ANN framework allows for a nonlinear time

evolution of the modal coefficients without performing a Galerkin projection. Our POD-

ANN framework can thus be considered an equation-free approach for latent space dynamics

evolution of nonlinear transient systems and can be applied to a wide range of physical and

engineering applications. Within this framework we introduce two architectures, namely

sequential network (SN) and residual network (RN), to train the trajectory of modal co-

efficients. We perform a systematic analysis of the performance of the proposed reduced

order modeling approaches on prediction of a nonlinear wave-propagation problem governed

by the viscous Burgers equation, a simplified prototype setting for transient flows. We find

that the POD-ANN-RN yields stable and accurate results for test problems assessed both

within inside and outside of the database range and performs significantly better than the

standard intrusive Galerkin projection model. Our results show that the proposed frame-

work provides a non-intrusive alternative to the evolution of transient physics in a POD

basis spanned space, and can be used as a robust predictive model order reduction tool for

nonlinear dynamical systems.
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1. Introduction

The full resolution of the dynamics of engineering flows requires a computational expense

that is as yet infeasible for any practical purpose. Due to these overwhelming computational

demands, model order reduction type approaches are gaining popularity. They are exten-

sively used for many optimization and control applications (Akhtar et al., 2015; Buffoni et al.,

2006; Dyke et al., 1996; Fang et al., 2009; Fortuna et al., 2012; Freund, 1999; Noack et al.,

2011; Lucia et al., 2004; Roychowdhury, 1999; Silveira et al., 1996). Among the multitude of

reduced order modeling approaches, proper orthogonal decomposition (POD) has emerged as

a popular technique for the study of dynamical systems (Aubry et al., 1988; Holmes et al.,

1998; Ly and Tran, 2001; Kerschen et al., 2005; Cizmas et al., 2008; Amsallem and Farhat,

2012; Taira et al., 2017). To clarify, POD is also documented under terminology such as the

Karhunen-Loève expansion (Loève, 1955), principal component analysis (Hotelling, 1933)

or empirical orthogonal function (Lorenz, 1956). POD extracts the most energetic modes

from a collection of high fidelity numerical simulations of the governing equations of the

dynamic system being studied. These bases are then used to reduce the degrees of freedom

of the governing equation to scales that are computationally tractable. In particular, the

fluid mechanics community has traditionally used POD as a method of extraction of the

large scale coherent structures (represented by these modes) for the purpose of statistical

pattern recognition (Lumley, 1967). This is because the global POD modes optimally span

our physical space through a considerably truncated number of bases to resolve attractors

and transients well.

The evolution equations for the lower order system are then obtained using the Galerkin

projection (GP) method. The POD-GP method has been extensively used to provide fast
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and accurate simulations of large nonlinear systems (Berkooz et al., 1993; Kunisch and Volk-

wein, 2002; Lucia et al., 2004; Borggaard et al., 2007; Weller et al., 2010; Benner et al., 2015;

Brunton and Noack, 2015; Taira et al., 2017; Rowley and Dawson, 2017). The Galerkin pro-

jection is devised so as to generate a reduced model where the truncated linear coefficients of

the POD bases are evolved through time as a set of ordinary differential equations (ODEs).

This process is denoted a projection since it is obtained by an orthogonal projection of the

governing equations onto the truncated POD modes. The result is a considerably truncated

system which continues to represent the most significant characteristics of the governing

equations. The small memory requirement and low computational expense of this frame-

work make it particularly suitable for post-processing analysis, optimization and control

type problems where repeated model evaluations are required over a large range of parame-

ters. This approach is significantly effective for quasi-stationary, time-periodic and decaying

problems but might be challenging for highly non-stationary, convective and nonlinear prob-

lems.

The drawbacks are generally due to the lack of adaptation of the POD modes as well as

the loss of information due to the truncation being limited to the most energetic of modes

(Cordier et al., 2013; El Majd and Cordier, 2016). Amongst the various efforts used to

mitigate these drawbacks include modeling the effect of truncated modes on the retained

ones, an approach known as closure modeling (Wang et al., 2011; Borggaard et al., 2011;

Wang et al., 2012; Östh et al., 2014; San and Iliescu, 2015; Wells et al., 2017; Xie et al.,

2017, 2018b,a), and developing strategies to construct a more representative basis (Iollo

et al., 2000; Buffoni et al., 2006; Bui-Thanh et al., 2007; Kunisch and Volkwein, 2010;

Carlberg and Farhat, 2011; San and Borggaard, 2015; Ahmed and San, 2018). On the other

hand, the energy balance and mass conservation properties of projection based reduced

order models have also been studied for fluid flows (Mohebujjaman et al., 2017). However,

the projection-based model reduction approaches have limitations especially for complex

systems such as general circulation models, since there is a lack of access to the full-order

model (ROM) operators or the complexity of the forward simulation codes that renders

the need for obtaining the full-order operators (Peherstorfer and Willcox, 2016). Therefore,
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there is a recent interest in generating fully non-intrusive approaches without the need for

access to full-order model operators to establish surrogate models (Audouze et al., 2013;

Mignolet et al., 2013; Xiao et al., 2015b,b; Hesthaven and Ubbiali, 2018; Hampton et al.,

2018; Chen et al., 2018b; Xiao et al., 2019; Wang et al., 2019).

Alternatively, machine learning offers promise to generate accurate parametric reduced

order models. There are a broad range of opportunities for the development of new deep

learning architectures for reduced order models and numerical analysis of these machine

learning approaches in applications of challenging flows. Recently, a supervised machine

learning approach has been used to develop feasible regions in the parameter space where

the admissible target accuracy is achieved with a predefined reduced order basis (Moosavi

et al., 2015). Neural networks based closure schemes have also been developed by the authors

to compute a stabilization term (i.e., eddy viscosity) for Galerkin projection based reduced

order models (San and Maulik, 2018a,c,b). A deep residual recurrent neural network has

been introduced as an efficient model reduction technique for nonlinear dynamical systems

(Kani and Elsheikh, 2017). In a context similar to this recurrent neural network architecture,

we formulate our problem in low-dimensional embedded structures that capture the major

portion of the energy of the system in order to take advantage of lower-dimensional coherent

structures that are responsible for the bulk mass, momentum, and energy transfer instead of

performing a very large-scale simulation that considers all structures. A recent investigation

of a spectral POD (SPOD) spanned model order reduction framework for fluid flows has

been performed by Lui and Wolf (2019) using the deep feedforward neural networks. A long

short-term memory (LSTM) architecture based model reduction approach has also been

recently introduced to complement an imperfect reduced order model with data-streams

utilizing a regularized hybrid framework (Wan et al., 2018).

The present study aims to bypass the Galerkin projection through the use of a single-

layer artificial neural network (ANN) by introducing two different architectures, namely a

sequential network (SN) and a residual network (RN). ANNs can be classified under the

broader category of machine learning methods (i.e., systems that learn from data) and are

a mathematical representation of the biological neural networks found in the human central

4



nervous system. They have been used for a wide variety of applications such as function

approximation, classification, data processing and dynamic systems control (Widrow et al.,

1994). Briefly, an ANN can be used to setup a nonlinear relationship between a desired set of

inputs and targets provided a large amount of benchmark data for the underlying relationship

is available. This fitting to available data (also known as training) ideally generates a set of

linear combinations of parameters and transfer functions which replicate the mean behavior

of the underlying phenomena. This allows for the representation of subtle relationships

which cannot be expressed explicitly in a functional form. The interested reader is directed

to the excellent introductory text by Demuth et al. (2014) on the development of a variety of

ANN architectures and their underlying principles. We stress here that generating a robust

non-intrusive reduced order modeling (ROM) approach is highly desirable for its ability

to preclude model-form uncertainty in our forward simulations for reduced computational

degree of freedom and is thus a highly active area of research (Xiao et al., 2015c,a; Bistrian

and Navon, 2015; Peherstorfer and Willcox, 2016; Lin et al., 2017; Kramer et al., 2017;

Bistrian and Navon, 2017). In fact, several recent studies have investigated the suitability of

ANN variants for fully non-intrusive dynamics capture in latent space (Mohan and Gaitonde,

2018; Wan et al., 2018; Wang et al., 2018).

With regard to the ROM methodology, we implement our framework in a context similar

to the works of Narayanan et al. (1999) and Khibnik et al. (2000) where the POD-GP

approach was replaced by an ANN-based evolution of the temporal dynamics of the ROM for

the purpose of active separation control in a planar diffuser. Their dataset for ANN training

was obtained both from direct numerical simulations of the Navier-Stokes equations as well

as experiments. In Sahan et al. (1997), an ANN was used to devise a feedback control circuit

for a transitional flow in a grooved channel. The dataset for ANN training was obtained

through a POD-GP simulation itself. Both works demonstrated the unique advantages of

the ANN approach, for example, the reduction of a system of governing PDEs to a no-

equation dynamic system through data-driven learning. We note that ANNs also find great

utilization in the field of feedback flow control where they are used to generate a direct

mapping of flow measurements to actuator control systems (Gillies, 1995, 1998, 2001; Faller
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and Schreck, 1997; Hocevar et al., 2004; Efe et al., 2004, 2005; Lee et al., 1997). General

machine learning based methods (of which ANN is a subset) are also growing in popularity

for fluid flow based applications and represent a computationally viable alternative to the

full Navier-Stokes equations (Bright et al., 2013; Gautier et al., 2015; Müller et al., 1999).

An excellent source of information about some viable machine learning classes can be found

in Ling and Templeton (2015). In turbulence modeling, ANN approaches have also been

used in combination with reduced degree-of-freedom implementations of the Navier-Stokes

framework, for instance in the quantification of errors in functional closure models (Singh and

Duraisamy, 2016) and for data-driven closure modeling (Milano and Koumoutsakos, 2002;

Tracey et al., 2013; Ling et al., 2016a,b; Maulik and San, 2017; Gamahara and Hattori,

2017).

This paper develops a framework for generating an ANN in order to create a very fast inte-

grator for certain types of partial differential equation (PDE) systems (e.g., one-dimensional

Burgers equation in our demonstrations). The ANN is created to represent a map for the

trajectory of the POD basis coefficients evolving from time n to time n+ 1. The projection

of snapshot data is used to train the ANN, i.e., make it choose the weights to best fit the

data in the POD spanned reduced order space. Therefore, this model reduction approach

is denoted as PON-ANN in our study. Using only snapshots of the state variables, our

data-driven approach can thus be considered truly non-intrusive, since any prior informa-

tion about the underlying governing equations is not required for generating the reduced

order model. This idea can be considered as a competitor to the POD-GP, and the advan-

tages are that this is an equation-free method, and also it can be more accurate since it can

be trained with more data. Although many new model order reduction techniques perform

better than standard POD-GP model, as highlighted above, we focus here on comparing the

proposed approach with the POD-GP model only. Future comparative studies should be

carried out to explore the feasibility of such non-intrusive models. Before proceeding with

our discussion, we describe the major questions we wish to answer in this work:

• Can the POD-ANN non-intrusive ROM approach be used for transient dynamical
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systems such as nonlinear Burgers equation?

• How does an ANN-based evolution of the modal coefficients compare to the POD-GP

approach?

• Can a trained POD-ANN (using a particular dataset) be used to interpolate or ex-

trapolate to flow problems with slight differences in temporal evolution and physics

(i.e., for different control parameter values such as Reynolds number)?

• Which POD-ANN architecture is more stable and robust in forecasting beyond the

training data range?

To answer these questions, we investigate a test case given by the nonlinear viscous Burgers

equation to compare both the POD-ANN and POD-GP approaches.

2. Mathematical modeling

The viscous Burgers equation is used in our study as a test case to explain the proposed

model reduction framework. In its original form, the Burgers equation can be written as

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
, x ∈ [0, 1], t ∈ [0, 1] , (1)

where Re is a non-dimensional Reynolds number. We must mention here that this equation

is generally considered a framework for preliminary evaluation of numerical methods for

analysis of fluid flow applications as it possesses the hallmarks of general nonlinear multi-

dimensional advection-diffusion problems. We consider a convective system in our model

order reduction assessments since it characterizes localized flow structures such as shock

waves. The above PDE can be solved exactly to obtain an analytical formulation for time

evolution of the the field variable u(x, t) given by (Maleewong and Sirisup, 2011)

u(x, t) =
x

t+1

1 +
√

t+1
t0

exp(Re x2

4t+4
)
, (2)

where t0 = exp(Re
8

). This exact expression is used to generate snapshot data for our forth-

coming model order reduction analysis. The database is constituted with Eq. (2) using
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Nx = 1024 spatial collocation points at each snapshot. Our database consists of snapshots

obtained by using 10 equally spaced values of Reynolds number, i.e., Re = [100, 200, ..., 1000].

Figure 1 shows the space-time behavior of the four representative solutions at different

Reynolds number.

3. Proper orthogonal decomposition

In this section we explore the POD approach for reduced order modeling to capture

unsteady, convective and non-periodic dynamics of the underlying governing partial differ-

ential equations. We elaborate the procedure for calculating the orthonormal bases and

corresponding coefficients for the Burgers problem and note that an extension to higher di-

mensions is straightforward. For a detailed discussion on this technique we refer the reader

to San and Iliescu (2014).

A representative POD basis can be constructed from any arbitrary scalar field variable

f at different times (also known as snapshots). These snapshots are generally obtained by

solving the governing equations we are attempting to model using a regular full-order model

(FOM) approach. The numerical methods used to obtain this field data are explained in

Section 6. In the following, we will utilize the index n to indicate a particular snapshot in

time. For the POD approach we utilize a total of N snapshots for the field variable, i.e.,

f(x, t(n)) for n = 1, 2, ..., N . The flow field data thus obtained is first decomposed into the

mean and fluctuating part as follows

f(x, t) = f̄(x) + f ′(x, t), f̄(x) =
1

N

N∑
n=1

f(x, t(n)), (3)

where f̄ implies a temporal averaging of a particular point value in the field and f ′ contains

the fluctuating quantity. We must remark here that f̄ is a function of space alone whereas

f ′ is a function of both space and time. A correlation matrix may be constructed using the

fluctuating components of the snapshots to give

Cij =

∫
Ω

f ′(x, t(i))f ′(x, t(j))dx, (4)
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where Ω is the entire spatial domain and i and j refer to the ith and jth snapshots. The

time correlation data matrix C is a non-negative symmetric square matrix of size N × N .

If we define the inner product of any two fields f1 and f2 as

(f1, f2) =

∫
Ω

f1(x)f2(x)dx (5)

we may express the correlation matrix as Cij =
(
f ′(x, t(i)), f ′(x, t(j))

)
. In this study, we

use the well-known Simpson’s 1/3 integration rule for a numerical computation of the inner

products. The optimal POD basis functions are obtained by performing an eigendecomposi-

tion of the C matrix. This has been shown in detail in the POD literature (see, e.g., Sirovich

(1987); Holmes et al. (1998); Ravindran (2000)). The eigenvalue problem can be written in

the following form:

CW = WΛ , (6)

where Λ = diag[λ1, λ2, ..., λN ] is a diagonal matrix containing the eigenvalues of this de-

composition and W =[w1, w2, ..., wN ]. The eigenvalues are stored in descending order,

λ1 ≥ λ2 ≥ ... ≥ λN . Then the orthogonal POD basis functions can be written as

φ1(x) =
N∑

n=1

w1
nf
′(x, t(n)), φ2(x) =

N∑
n=1

w2
nf
′(x, t(n)), ..., φN(x) =

N∑
n=1

wN
n f
′(x, t(n)) ,

(7)

where wk
n is the nth component of the kth eigenvector wk. Therefore, we emphasize that the

POD modes are ranked according to the magnitude of their eigenvalue. The eigenvectors

must also be normalized in order to satisfy the condition of orthonormality between bases:

(φi, φj) =

 1, i = j

0, i 6= j .
(8)

It can be shown that, for Eq. (8) to be true, the eigenvector wk must satisfy the following

equation:

N∑
n=1

wk
nw

k
n =

1

λk
, (9)
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where λk is the kth eigenvalue associated to the eigenvector wk. In practice, most of the

subroutines for solving the eigensystem given in Eq. (6) return the eigenvector matrix W

having all the eigenvectors normalized to unity. In that case, the orthogonal POD bases are

given by

φk(x) =
1√
λk

N∑
n=1

wk
nf
′(x, t(n)) (10)

where φk(x) is the kth POD basis function. We remark here that the POD should be

carried out independently for each field variable for multidimensional governing equations.

We collect 101 snapshots between time t = 0 and t = 1 at each Reynolds number between

Re = 100 and Re = 1000 using 10 different realizations (i.e., Re = [100, 200, ..., 1000]).

Figure 2 shows the eigenvalues of the time correlation matrix C and the corresponding

relative information content (RIC) index, which is defined as (Gunzburger, 2012; Tallet

et al., 2016)

RICk =

∑k
n=1 λn∑N
n=1 λn

× 100, (11)

where the number of snapshots is set to N = 1010 in our study. As shown in Table 1, the

RIC index measures the percentage of captured energy for different number of POD modes.

It is evident that a small number of modes are enough to capture the spatial and temporal

dynamics of the system well. Therefore, we present our ROM analyses using R = 6 largest

(most energetic) POD modes capturing approximately 98.27 % of the energy. Figure 3

illustrates the associated POD basis functions utilized in this study.

4. Galerkin projection methodology

The POD basis functions account for the essential dynamics of the underlying governing

equations. After these data-driven empirical POD basis functions are obtained, a set of

nonlinear ODEs can be derived by using a Galerkin projection. To build a projection based

ROM, we truncate the system by considering the first R largest POD basis functions with

R � N . These POD modes correspond to the R largest eigenvalues, λ1, λ2, ..., λR. Using

these first R largest POD basis functions the field variables are then approximated.
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Figure 2 shows a collection of the modal values (i.e., the eigenvalues) of the POD-ROM

analysis. The main motivation behind the construction of a POD-GP is evident when

it is observed that the 6 most energetic modes retain 98.27% of the total energy of the

system. We note that these bases are all orthogonal to each other. For our test case, i.e.,

u(x, t) = ū+ u′(x, t), the Galerkin projection can be carried out in the following manner

u′(x, t) =
R∑

k=1

ak(t)φk(x) , (12)

where ak are the time dependent coefficients, and φk are the space dependent modes. To

derive the POD-ROM, we first rewrite the Burgers equation (i.e., Eq. (1)) in the following

form

∂u

∂t
= L[u] +N [u;u] , (13)

where L[f ] = 1
Re

∂2f
∂x2 is the linear operator and N [f ; g] = −f ∂g

∂x
is the nonlinear operator.

We emphasize that the procedure can be easily extended to the general nonlinear PDEs

(e.g., Boussinesq or Navier-Stokes equations). By applying this projection to our nonlinear

system (i.e., multiplying Eq. (13) with the basis functions and integrating over the domain),

we obtain the Galerkin POD-ROM, denoted POD-GP:(
∂u

∂t
, φk

)
= (L[u], φk) + (N [u;u], φk), for k = 1, 2, ..., R . (14)

Substituting Eq. (12) into Eq. (14), and simplifying the resulting equation by using the

condition of orthonormality given in Eq. (8), the POD-GP implementation can be written

as follows:

dak
dt

= Bk +
R∑
i=1

Likai +
R∑
i=1

R∑
j=1

Nijkaiaj, for k = 1, 2, ..., R , (15)

where

Bk = (L[ū] +N [ū; ū], φk), (16)

Lik = (L[φi] +N [ū;φi] +N [φi; ū], φk), (17)

Nijk = (N [φi;φj], φk). (18)
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The POD-GP given by Eq. (15) consists of R coupled ODEs and can be solved by a

standard numerical method (such as the third-order Runge-Kutta scheme that was used in

this study). The number of degrees of freedom of the system is now significantly lower.

The vectors, matrices and tensors in Eqs. (16)-(18) are also precomputed quantities, which

results in a dynamical system that can be solved very efficiently. To complete the dynamical

system given by Eq. (15), the initial condition is given by using the following projection:

ak(t = 0) = (u(x, t = 0)− ū(x), φk) , (19)

where u(x, t = 0) is the physical initial condition of the problem given in Eq. (2).

5. Artificial neural networks

A simple feed-forward artificial neural network consists of L layers with each layer pos-

sessing a predefined number of unit cells called neurons and is utilized for establishing

nonlinear maps between two spaces of potentially different dimensionality through a super-

vised learning. Each of these layers may be considered an intermediate step in successive

transformations between the input and output space and has an associated transfer function

and each unit cell has an associated bias. Therefore, in our choice of network, any input to

the neuron has a bias added to it followed by an activation through the transfer function.

To describe this process using equations, we have (Demuth et al., 2014)

sli =
∑
j

W l
ijX

l−1
j , (20)

as the state of the signal in the lth layer receiving a set of inputs from the (l − 1)th layer,

where W l
ij stands for a matrix of weights linking the l − 1 and l layers with X l−1

j being the

output of the (l − 1)th layer. The output signal of the lth layer is now given by

X l
i = F (sli + bli), (21)

where bli is the biasing parameter for the ith neuron in the lth layer. Every node (or unit cell)

has an associated transfer function which acts on its input and bias to produce an output
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which is ‘fed forward’ in the network. The nodes which take the raw inputs of our training

data set (i.e., the nodes of the first layer in the network) perform no computation (i.e., they

do not have any biasing or activation through a transfer function). The next layers are

a series of unit cells which have an associated bias and activation function which perform

computation on their inputs. These are called the hidden layers due to the indeterminate

nature of their mathematical operations. The final layer in the network is that of the

outputs. The output layer generally has a linear activation function with a bias which

implies a simple summation of inputs incident to a unit cell with its associated bias. A

mathematical description of this mapping operation can be expressed as

M : {p1, p2, . . . , pP} ∈ RP → {q1, q2, . . . , qQ} ∈ RQ. (22)

where P and Q are the dimensions of the input and output spaces. In this investigation,

we have used one hidden layer of neurons between the set of inputs and targets with a

tan-sigmoid activation function. The tan-sigmoid function can be expressed as

F (a) =
2

1 + exp(−2a)
− 1. (23)

The transfer function F calculates the neuron’s output given its net input. In theory, any

differentiable function can qualify as an activation function (Zhang et al., 1998), however,

only a small number of functions which are bounded, monotonically increasing and differ-

entiable are used for this purpose. The choice of using ANN is motivated by its excellent

performance as a forecasting tool (Dawson and Wilby, 1998; Kim and Valdés, 2003) and its

general suitability in the machine learning and function estimation domain (e.g., see Haykin

et al. (2009) and references therein).

5.1. POD transforms

The key idea in our learning problem is the model reduction. Instead of posing our

learning problem in a full-order space, we first apply projection to the full-order data and

generate coefficients on a reduced subspace, and then construct the learning on this reduced-

order space. Here we briefly describe the main procedure to generate such nun-intrusive
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reduced order models. Lets consider we have snaphots either coming from the full-order

numerical simulations or experiments. Section 3 illustrates how to obtain representative

POD modes. At any snapshot, u(n), our encoder operator can be written using the definition

of inner product as

a
(n)
k =

(
u(n) − ū, φk

)
, for k = 1, 2, ..., R, (24)

where basis functions φk and the mean field ū are already available. This can be interpreted

as a forward POD transform from the FOM space to the ROM space. We then perform our

supervised learning for a
(n)
k to train a map for computing the modal coefficient trajectories.

The details of the neural network architectures can be found in more detail in the following

section. Finally, the decoder operator is defined as

u(n) = ū+
R∑

k=1

a
(n)
k φk, (25)

which can be referred to as an inverse POD transform. Indeed this expression can be used

to generate full-order space data from the modal coefficients at any time.

5.2. ANN training

The training of a desired ANN is carried out by minimizing the error between the target

and the inputs to determine a set of best fit parameters. This is also known as supervised

learning where labeled data is utilized for gradient based optimization. Our best fit pa-

rameters obtained from optimization are biases and linear weights that have captured the

underlying relationship between the targets and inputs and may now be used to predict

target data for inputs a-posteriori. The main advantage of using the ANN approach over

traditional statistical regression models is that comparatively smaller data sets for training

are suitable. We shall describe the individual features of the ANN architecture relevant to

our test case in the sections that follow.

The training of an ANN architecture may be undertaken by a variety of optimization

algorithms. For our purpose, we have employed the Bayesian regularization minimization al-

gorithm which is one of the popular approaches to ANN training within the framework of the
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MATLAB nnstart toolbox and particularly useful for noisy data (Gençay and Qi, 2001).

We remark that other training methods may also be used such as Lebenberg-Marquardt

(Levenberg, 1944) and nature-inspired heuristic algorithms such as particle swarm (Eber-

hart and Kennedy, 1995), differential evolution (Storn and Price, 1997) or leapfrogging

(Rhinehart et al., 2012). However, access to gradient information (through the use of a

differentiable cost-function) heavily favors the use of gradient-based optimizers. The pro-

cess of backpropagation, where the errors in the output of the network are propagated back

through the network to determine optimal search directions in parameter space is well suited

for our particular architecture which utilizes solely one hidden layer. However, a detailed

hyperparamater search is beyond the scope of this study since we would like to focus on

the performance assessment of the proposed architectures using default options available in

nnstart (e.g., mean-squared error loss function).

For the purpose of tracking the training of the ANN and evaluating its performance, we

utilize three different subsets of our overall data with 70% being utilized for training, and

15% being utilized for validation and testing each. The training data set is used to adjust the

weights of the ANN. The validation data set is used to minimize overfitting, i.e., it is used

to verify whether an increase in accuracy over the training data set also yields an increased

accuracy over a data set that is not revealed to the network a-priori. The validation data

set is used for testing the final solution of the neural network. We note that the input and

output features are all scaled between their minimum and maximum values and the scaling

parameters are ported for deployment. Within the POD context, the trained ANN can

be used as a ‘blackbox’ which takes the present state of the latent space dynamics as the

input along with a dimensionless parameter and the present time and uses the memory of

its training to determine the time evolution. Although not shown here for brevity, we note

that the regression analysis shows a perfect correlation in the time history of the temporal

modes and develops a system which could predict their evolution accurately.
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5.3. ANN architecture for model order reduction

In the present study, we devise a framework for developing an ANN in order to create a

very fast (equation-free or non-intrusive) integrator/solver for certain types of PDE systems.

This idea can be considered as a competitor for POD-GP, with the advantage this is an

equation-free and purely data-driven with associated benefits in computational efficiency

and model-form uncertainty reduction.

Figure 4 illustrates the ANN architectures utilized in this study. In these architectures,

several inputs are provided, out of which the majority are basis coefficients at the current

timestep in the POD-ROM evolution and the remaining two are Reynolds number and time.

The training data is also arranged in the same manner. Our outputs are given by just the

coefficient values required for a field reconstruction in the next step. The figure referred to

above shows the number of inputs (modal POD coefficients, Reynolds number and time)

and the number of outputs (modal POD coefficients at the next timestep). The middle layer

l contains the neurons with the tan-sigmoid activation function and these are varied in our

investigation. Therefore our first mapping approach, sequential network (SN) architecture,

equipped by R = 6 modes can be given by

M1 : {Re, t(n), a
(n)
1 , a

(n)
2 , . . . , a

(n)
6 } ∈ R8 → {a(n+1)

1 , a
(n+1)
2 , . . . , a

(n+1)
6 } ∈ R6. (26)

We denote this model as POD-ANN-SN. As discussed by Chen et al. (2018a), machine

learning models such as residual networks (He et al., 2016) define a discrete sequence of

finite transformations to a hidden state in the following form (Haber and Ruthotto, 2017;

Lu et al., 2017):

a
(n+1)
k = a

(n)
k + rk, for k = 1, 2, ..., R, (27)

where rk refers to the residual that we can approximate using an ANN. This can be seen as

an Euler update in a discrete sense as follows (i.e., defining the residual as rk = ∆tfk)

a
(n+1)
k = a

(n)
k + ∆tfk, (28)
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where ∆t = t(n+1) − t(n), and fk is the slope

fk =
a

(n+1)
k − a(n)

k

∆t
. (29)

To investigate the performance of such a residual network, a similar network shown also in

Figure 4 is also designed for R = 6 largest POD modes, which can be defined as

M2 : {Re, t(n), a
(n)
1 , a

(n)
2 , . . . , a

(n)
6 } ∈ R8 → {r1, r2, . . . , r6} ∈ R6. (30)

and the POD coefficients are then obtained by Eq. (27) before the consequent step. This

model is denoted as POD-ANN-RN in our study. Details related to data acquistion for

our network training are provided in Section 7. We highlight that the main objective of

the present work is to test and evaluate the characteristics of the proposed POD-ANN ap-

proaches and compare them with the true solution obtained by a projection to the full order

model (FOM). Our assessments also includes intrusive results generated by the standard

POD-GP framework.

6. Numerical methods

In this section, we provide a brief description of the numerical methods employed in this

study. First of all, we implement compact difference schemes to approximate the differential

operators (both linear and nonlinear terms) in the POD-GP. Compact difference schemes

have shown their ability to reach the objectives of high-accuracy and low computational cost

for many problems in fluid dynamics (Lele, 1992; Wang and Liu, 2002).

In a compact difference scheme, the first order derivatives can be computed accordingly

(Lele, 1992)

αf ′i−1 + f ′i + αf ′i+1 = a
fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
, (31)

which gives rise to an α-family of tridiagonal schemes with a = 2
3
(α+ 2), and b = 1

3
(4α− 1).

The subscript i represents the spatial grid index in the considered direction, and ∆x is

the uniform grid spacing in that direction. Here, α = 0 leads to the explicit non-compact

fourth-order scheme for first derivative computations. A classical compact fourth-order
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scheme, which is also known as Padé scheme, is obtained by setting α = 1/4, resulting

in b = 0 with a compact dependence. In computing the linear diffusion term, the second

derivative compact scheme is given by

αf ′′i−1 + f ′′i + αf ′′i+1 = a
fi+1 − 2fi + fi−1

∆x2
+ b

fi+2 − 2fi + fi−2

4∆x2
, (32)

where a = 4
3
(1 − α), and b = 1

3
(10α − 1). For α = 1/10 the classical fourth-order Padé

scheme is obtained. The high-order one-sided derivative formulas are used for the Dirichlet

boundary conditions to complete a tridiagonal system of equations for both the first and

second order derivative formulas (Carpenter et al., 1993).

As a time integrator, we use an optimal third-order accurate total variation diminishing

Runge-Kutta (TVDRK3) scheme that is given as (Gottlieb and Shu, 1998)

u
(1)
i = u

(n)
i + ∆t£(u

(n)
i ),

u
(2)
i =

3

4
u

(n)
i +

1

4
u

(1)
i +

1

4
∆t£(u

(1)
i ),

u
(n+1)
i =

1

3
u

(n)
i +

2

3
u

(2)
i +

2

3
∆t£(u

(2)
i ), (33)

where £(u) is the discrete operator of spatial derivatives including linear and nonlinear

terms. To perform the inner products defined by Eq. (5), we compute the integral of any

arbitrary function g(x) over the domain Ω by using the Simpson’s 1/3 rule (Hoffman and

Frankel, 2001) ∫
Ω

g(x)dx =
∆x

3

Nx/2−1∑
i=1

(
g2i + 4g2i+1 + g2i+2

)
, (34)

where Nx is the total number of grid point (e.g., an even number in order to be consistent

with the Simpson’s integration rule).

7. Results

In the following we provide modal coefficient evolution data for our test case and make

assessments of the relative performance of the POD-ANN and POD-GP approaches. Al-

though measuring the state evolution error is not equivalent to measuring the error in any
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standard function space norm or quantity of interest, we found that it simplifies our demon-

stration and presents an efficient way in our assessments between the proposed approaches

and standard POD-GP model. In addition, we also provide details related to the calcula-

tion of POD bases and their coefficients for the use of data-driven learning and a-posteriori

deployment.

POD bases for the viscous Burgers equation problem are generated by accumulation of

snapshot data from the exact solution given by Eq. (2). As described in Section 3, snapshot

sampling is done at different Reynolds numbers between 100 and 1000 at intervals of 100 each

(i.e., Re = 100, Re = 200, ..., Re = 1000). Each choice of a Reynolds number is sampled

for 101 snapshots in time between t = 0 and t = 1. This leads to a total of 1010 snapshots

to construct a snapshot correlation data matrix C with the size of 1010 × 1010. Although

we generate such 1010 snapshots from the closed form expression, we remark that these

snapshots can be obtained from experiments or full order model numerical simulations in

most real-life problems. The physics of these multiple snapshots for each control parameter is

thus spanned by a single set of optimal bases used for subsequent ANN training or Galerkin

projection. The ANN training data has been reconstructed with a timestep of ∆t = 0.001 for

the same database with 10 different Re from t = 0 to t = 1, which leads to 10,010 samples

in our training set. We note that the timestep for POD-GP and POD-ANN deployment

are kept identical in our numerical assessments. We highlight that the training of ANN to

bypass the Galerkin procedure is an offline cost which utilizes approximately 45 seconds.

We note that the results shown in this subsection are for Reynolds number values which

were not within the training dataset range for the ANN. Throughout our study we use

a single-layer neural network with M = 10 neurons and employing R = 6 POD modes.

Figure 5 shows a comparison at Re = 750 on predicting the POD basis coefficients. Our

numerical assessment with Reynolds number of 750 represents the interpolative abilities

of both POD-GP and POD-ANN approaches. It is clear that the POD-ANN approach

preserves state accuracy for a greater duration as compared to the POD-GP approach. At

this Re, the performance of the both POD-ANN approaches is remarkable. Indeed for

the first mode, the POD-ANN approaches preserve the amplitude and phase behavior for
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the coefficient very well. Coefficients for higher modes tend to show a slight variation in

amplitude when compared to DNS data but this variation is quite negligible when compared

along the POD-GP approach which shows extensive loss of phase and amplitude at higher

modes.

Our next test at Re = 1250 represents the extrapolative abilities of both POD-GP and

POD-ANN models, in which the training data is generated from snapshots between Re = 100

and Re = 1000. Figure 6 shows a similar study where we have retained only 6 POD modes

to predict the flow field at higher Re. It can be easily seen that both non-intrusive POD-

ANN-SN and POD-ANN-RN approaches yield stable and accurate results. Furthermore,

one can immediately notice a significant inaccuracy in the POD-GP approach. Considering

only six largest POD modes might not be rich enough to represent the underlying transient

behavior. However, the POD-ANN approaches still perform well in terms of capturing the

amplitude of the first six modes even though slight variations in the phase for the highest

modes are seen in the Re = 1250 case as shown in Figure 6. Although the POD-GP method

shows a considerable deviation from the truth as compared to the POD-ANN approaches,

when examining the difference between the POD-ANN-SN and POD-ANN-RN non-intrusive

methodologies, we can see that the POD-ANN-RN provides more accurate estimates as

compared to the POD-ANN-SN approach which does a decent job at capturing amplitude

and phase behavior at this Reynolds number.

To further investigate the behavior of the proposed ANN architectures at higher Reynolds

number, we test the proposed non-intrusive frameworks for Re = 2000. To this end, Figure 7

presents our numerical assessments at Re = 2000 that is far beyond the parameter range

utilized in the training database. This examination points out that the POD-ANN-RN

is more stable than the POD-ANN-SN. This figure also demonstrates significantly more

accurate behavior shown by the POD-ANN-RN approach. In terms of computational costs,

the POD-ANN approaches equipped by M = 10 neurons do not require the use of Runge-

Kutta based time stepping and is thus observed to be two orders of magnitude faster than

the POD-GP. However, we note that the running time is significantly less than a second

for both non-intrusive POD-ANN and intrusive POD-GP approaches with R = 6 modes.
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Indeed, we observe that the computational performance of both POD-GP and POD-ANN

codes is dominated by data-writing for post-processing.

We stress here that bypassing the computation of the reduced system obtained through

Galerkin projection and truncation ensures that our non-intrusive frameworks are purely

data-driven. The non-intrusive nature of the POD-ANN methodology and the lack of a

system of equations that needs to be solved for discretely in time thus leads to an attractive

alternative to the POD-GP implementation. Although we illustrate that a robust surrogate

model can be obtained by a residual network based ANN architecture without a need to

access to the governing equations, we highlight that the intrusive or any other models gener-

ated from the first principles allow one to prove important properties like numerical stability,

convergence, energy conservation, etc., which are all seemingly lost in blackbox ANN models.

However, we refer the readers to Xu and Darve (2019) for an excellent discussion of the key

issues in utilizing neural network approaches to inverse problems in differential equations

such as universal approximation, regularization, curse of dimensionality and computational

efficiency.

8. Concluding remarks

In this study, we have investigated the predictive performance of two different POD-

enabled model order reduction approaches for the time evolution of the state. First, we

look at the classical Galerkin projection approach where a system of ODEs is developed for

the evolution of each state coefficient (corresponding to a scalar field variable). Second, we

have developed an equation-free artificial neural network (ANN) framework through data-

driven learning which predicts the evolution of the modes without the explicit time stepping

approach used in the Galerkin projection. We give a demonstration of the proposed ANN

framework for two architectures: (i) a sequential network (SN) where we compute the trajec-

tory of POD coefficients directly, and (ii) a residual network (RN) where we train our model

with a discrete residual information, rather than using the sequential state variables. Our

numerical assessments are presented for the viscous Burgers equation benchmark problem at

various Reynolds number. We notice that the POD-ANN approaches outperforms POD-GP
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consistently across the different testing environments and proves excellent in both interpo-

lating and extrapolating its learning from obtained data sets for simulations with different

control parameters and underlying physics. Furthermore, we demonstrate that POD-ANN-

RN yields significantly more stable results especially for the extrapolatory parameter range

that are outside of the training range. We revisit the questions we posed in the introduction

to conclude our investigation:

• We can conclude with confidence that the POD-ANN approach is superior to the

POD-GP approach for the Burgers equation especially for highly truncated systems

(i.e., systems represented by a few modes only).

• We can also state that POD-ANN is a viable tool for extrapolation and interpolation

beyond the data sets used to train its learning. While it is expected to provide good

results within the bounds of the training data set, the Burgers case detailed its capacity

to predict the coefficient evolution of different Reynolds numbers in an accurate manner

with much greater accuracy than POD-GP.

• We find that the residual network formulation is significantly more stable than the

sequential network formulation.

Furthermore, we present the following observations which were made during this study:

• Once trained, the POD-ANN can be considered to be an ‘equation-free’ ROM archi-

tecture.

• Although the POD-GP gives us usually better approximations while increasing the

retained number modes, the POD-ANN is better suited to more radically truncated

systems since an ANN with higher degrees of freedom may show statistical errors on

time evolution.

• POD-ANN represents a viable framework for modeling highly nonlinear systems when

data is available incrementally and constant updates are required. It is also very well

suited to situations where model interpretability is not a major concern.
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• While our training algorithm utilized the standard Bayesian regularization algorithm,

it must be noted that there exists many training methodologies which may better

preserve the underlying statistical relationships of the inputs and outputs. The effect

of training approaches is a future direction of study for this work.

• We also recognize that the POD-ANN, despite its obvious benefits, also leads to the

drawback of reduced interpretability due to its blackbox nature. In addition, the

a-priori requirement of training implies poor generalizability of the POD-ANN frame-

work to completely different physical regimes.

• Additionally we note that the use of more advanced regularization techniques in the

ANN training (an aspect not considered in this study) would potentially lead to more

stable non-intrusive ROM methodologies.

• Training with noisy data may also be studied for obviating the need for closure mod-

eling in the POD-GP framework.

An overview of our conclusions are provided in Table 2 which contrasts the difference

between POD-GP and POD-ANN type methods for ROMs. Although our study utilizes

a shallow neural network architecture, we believe that the integration of machine learning

tools such as deep learning into the mainstream reduced order modeling ideology would

represent a significant increase in its viability for both theoretical and application oriented

goals. We would like to conclude that POD-ANN-RN would be a viable ROM procedure for

convective flows where the response of complex system dynamics is desired to be represented

accurately by a few representative modes.
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Östh, J., Noack, B. R., Krajnović, S., Barros, D., Borée, J., 2014. On the need for a nonlinear subscale

turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body.

Journal of Fluid Mechanics 747, 518–544.

Peherstorfer, B., Willcox, K., 2016. Data-driven operator inference for nonintrusive projection-based model

reduction. Computer Methods in Applied Mechanics and Engineering 306, 196–215.

Ravindran, S. S., 2000. A reduced-order approach for optimal control of fluids using proper orthogonal

decomposition. International Journal for Numerical Methods in Fluids 34 (5), 425–448.

Rhinehart, R. R., Su, M., Manimegalai-Sridhar, U., 2012. Leapfrogging and synoptic Leapfrogging: A new

optimization approach. Computers & Chemical Engineering 40, 67–81.

Rowley, C. W., Dawson, S. T., 2017. Model reduction for flow analysis and control. Annual Review of Fluid

Mechanics 49, 387–417.

Roychowdhury, J., 1999. Reduced-order modeling of time-varying systems. IEEE Transactions on Circuits

and Systems II: Analog and Digital Signal Processing 46 (10), 1273–1288.

Sahan, R., Koc-Sahan, N., Albin, D., Liakopoulos, A., 1997. Artificial neural network-based modeling and

intelligent control of transitional flows. In: Proceedings of the 1997 IEEE International Conference on

Control Applications. IEEE, pp. 359–364.

San, O., Borggaard, J., 2015. Principal interval decomposition framework for POD reduced-order modeling

of convective Boussinesq flows. International Journal for Numerical Methods in Fluids 78 (1), 37–62.

29



San, O., Iliescu, T., 2014. Proper orthogonal decomposition closure models for fluid flows: Burgers equation.

International Journal of Numerical Analysis and Modeling 5, 217–237.

San, O., Iliescu, T., 2015. A stabilized proper orthogonal decomposition reduced-order model for large scale

quasigeostrophic ocean circulation. Advances in Computational Mathematics 41 (5), 1289–1319.

San, O., Maulik, R., 2018a. Extreme learning machine for reduced order modeling of turbulent geophysical

flows. Physical Review E 97 (4), 042322.

San, O., Maulik, R., 2018b. Machine learning closures for model order reduction of thermal fluids. Applied

Mathematical Modelling 60, 681–710.

San, O., Maulik, R., 2018c. Neural network closures for nonlinear model order reduction. Advances in

Computational Mathematics 44, 1717–1750.

Silveira, L. M., Kamon, M., White, J., 1996. Efficient reduced-order modeling of frequency-dependent cou-

pling inductances associated with 3-D interconnect structures. IEEE Transactions on Components, Pack-

aging, and Manufacturing Technology: Part B 19 (2), 283–288.

Singh, A. P., Duraisamy, K., 2016. Using field inversion to quantify functional errors in turbulence closures.

Physics of Fluids 28 (4), 045110.

Sirovich, L., 1987. Turbulence and the dynamics of coherent structures. I-Coherent structures. II-Symmetries

and transformations. III-Dynamics and scaling. Quarterly of Applied Mathematics 45, 561–571.

Storn, R., Price, K., 1997. Differential evolution–a simple and efficient heuristic for global optimization over

continuous spaces. Journal of Global Optimization 11 (4), 341–359.

Taira, K., Brunton, S. L., Dawson, S. T., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T.,

Gordeyev, S., Theofilis, V., Ukeiley, L. S., 2017. Modal analysis of fluid flows: An overview. AIAA Journal

55, 4013–4041.

Tallet, A., Allery, C., Leblond, C., 2016. Optimal flow control using a POD-based reduced-order model.

Numerical Heat Transfer, Part B: Fundamentals 70 (1), 1–24.

Tracey, B., Duraisamy, K., Alonso, J., 2013. Application of supervised learning to quantify uncertainties

in turbulence and combustion modeling. In: 51st AIAA Aerospace Sciences Meeting including the New

Horizons Forum and Aerospace Exposition. p. 259.

Wan, Z. Y., Vlachas, P., Koumoutsakos, P., Sapsis, T., 2018. Data-assisted reduced-order modeling of

extreme events in complex dynamical systems. PloS One 13 (5), e0197704.

Wang, C., Liu, J.-G., 2002. Analysis of finite difference schemes for unsteady Navier-Stokes equations in

vorticity formulation. Numerische Mathematik 91 (3), 543–576.

Wang, Q., Hesthaven, J. S., Ray, D., 2019. Non-intrusive reduced order modeling of unsteady flows using

artificial neural networks with application to a combustion problem. Journal of Computational Physics

384, 289–307.

30



Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T., 2011. Two-level discretizations of nonlinear closure models

for proper orthogonal decomposition. Journal of Computational Physics 230 (1), 126–146.

Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T., 2012. Proper orthogonal decomposition closure models for

turbulent flows: a numerical comparison. Computer Methods in Applied Mechanics and Engineering 237,

10–26.

Wang, Z., Xiao, D., Fang, F., Govindan, R., Pain, C. C., Guo, Y., 2018. Model identification of reduced

order fluid dynamics systems using deep learning. International Journal for Numerical Methods in Fluids

86 (4), 255–268.

Weller, J., Lombardi, E., Bergmann, M., Iollo, A., 2010. Numerical methods for low-order modeling of fluid

flows based on POD. International Journal for Numerical Methods in Fluids 63 (2), 249–268.

Wells, D., Wang, Z., Xie, X., Iliescu, T., 2017. An evolve-then-filter regularized reduced order model for

convection-dominated flows. International Journal for Numerical Methods in Fluids 84 (10), 598–615.

Widrow, B., Rumelhart, D. E., Lehr, M. A., 1994. Neural networks: applications in industry, business and

science. Communications of the ACM 37 (3), 93–106.

Xiao, D., Fang, F., Buchan, A., Pain, C., Navon, I., Muggeridge, A., 2015a. Non-intrusive reduced order

modelling of the Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering

293, 522–541.

Xiao, D., Fang, F., Pain, C., Hu, G., 2015b. Non-intrusive reduced-order modelling of the Navier–Stokes

equations based on RBF interpolation. International Journal for Numerical Methods in Fluids 79 (11),

580–595.

Xiao, D., Fang, F., Pain, C., Hu, G., 2015c. Non-intrusive reduced-order modelling of the Navier–Stokes

equations based on RBF interpolation. International Journal for Numerical Methods in Fluids 79 (11),

580–595.

Xiao, D., Heaney, C., Fang, F., Mottet, L., Hu, R., Bistrian, D., Aristodemou, E., Navon, I., Pain, C., 2019.

A domain decomposition non-intrusive reduced order model for turbulent flows. Computers & Fluids 182,

15–27.

Xie, X., Mohebujjaman, M., Rebholz, L., Iliescu, T., 2018a. Data-driven filtered reduced order modeling of

fluid flows. SIAM Journal on Scientific Computing 40 (3), B834–B857.

Xie, X., Wells, D., Wang, Z., Iliescu, T., 2017. Approximate deconvolution reduced order modeling. Com-

puter Methods in Applied Mechanics and Engineering 313, 512–534.

Xie, X., Wells, D., Wang, Z., Iliescu, T., 2018b. Numerical analysis of the Leray reduced order model.

Journal of Computational and Applied Mathematics 328, 12–29.

Xu, K., Darve, E., 2019. The neural network approach to inverse problems in differential equations. arXiv

preprint arXiv:1901.07758.

31



Zhang, G., Patuwo, B. E., Hu, M. Y., 1998. Forecasting with artificial neural networks: The state of the

art. International Journal of Forecasting 14 (1), 35–62.

32



List of Figures

1 Space-time solution of the Burgers equation for various Reynolds numbers
within our database. Note that both the POD analysis and ANN training
consider a database constructed by using 10 equally spaced values of Reynolds
number between Re = 100 and Re = 1000, i.e., Re = [100, 200, ..., 1000]. . . . 34

2 Eigenvalues of the snapshot correlation matrix (left) and the corresponding
relative information content (RIC) index (right) for the space-time solution
of the viscous Burgers equation. Note that we retain only the most energetic
6 POD modes in our model order reduction analysis. . . . . . . . . . . . . . 35

3 Illustration of the most energetic POD basis functions generated using a total
of 1010 data snapshots from Re = 100 and Re = 1000. . . . . . . . . . . . . 36

4 The non-intrusive model order reduction enablers for transient flows with the
sequential network M1 (left) and residual network M2 (right) ANN architec-
tures. We illustrate our architectures for one physical control parameter Re
and use only one hidden layer equipped with M neurons and employing R
most energetic POD modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Numerical assessments of the POD-GP and POD-ANN models with R = 6
POD modes applied to the Burgers problem for an interpolatory out-of-sample
parameter Re = 750, where the training set includes snapshots between Re =
100 and Re = 1000. The non-intrusive POD-ANN-SN and POD-ANN-RN
results are obtained using M = 10 neurons in the hidden layer. Note that the
exact solution projected to the reduced order space is shown with the black
solid line with circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Numerical assessments of the POD-GP and POD-ANN models with R =
6 POD modes applied to the Burgers problem at Re = 1250, where the
training set includes snapshots between Re = 100 and Re = 1000. The
non-intrusive POD-ANN-SN and POD-ANN-RN results are obtained using
M = 10 neurons in the hidden layer. Note that the exact solution projected
to the reduced order space is shown with the black solid line with circles. . . 39

7 Numerical assessments of the POD-GP and POD-ANN models with R =
6 POD modes applied to the Burgers problem at Re = 2000, where the
training set includes snapshots between Re = 100 and Re = 1000. The
non-intrusive POD-ANN-SN and POD-ANN-RN results are obtained using
M = 10 neurons in the hidden layer. Note that the exact solution projected
to the reduced order space is shown with the black solid line with circles. . . 40

33



Figure 1: Space-time solution of the Burgers equation for various Reynolds numbers within our database.
Note that both the POD analysis and ANN training consider a database constructed by using 10 equally
spaced values of Reynolds number between Re = 100 and Re = 1000, i.e., Re = [100, 200, ..., 1000].

34



Figure 2: Eigenvalues of the snapshot correlation matrix (left) and the corresponding relative information
content (RIC) index (right) for the space-time solution of the viscous Burgers equation. Note that we retain
only the most energetic 6 POD modes in our model order reduction analysis.
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Figure 3: Illustration of the most energetic POD basis functions generated using a total of 1010 data
snapshots from Re = 100 and Re = 1000.
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Figure 4: The non-intrusive model order reduction enablers for transient flows with the sequential network
M1 (left) and residual network M2 (right) ANN architectures. We illustrate our architectures for one
physical control parameter Re and use only one hidden layer equipped with M neurons and employing R
most energetic POD modes.
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Figure 5: Numerical assessments of the POD-GP and POD-ANN models with R = 6 POD modes applied to
the Burgers problem for an interpolatory out-of-sample parameter Re = 750, where the training set includes
snapshots between Re = 100 and Re = 1000. The non-intrusive POD-ANN-SN and POD-ANN-RN results
are obtained using M = 10 neurons in the hidden layer. Note that the exact solution projected to the
reduced order space is shown with the black solid line with circles.
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Figure 6: Numerical assessments of the POD-GP and POD-ANN models with R = 6 POD modes applied
to the Burgers problem at Re = 1250, where the training set includes snapshots between Re = 100 and
Re = 1000. The non-intrusive POD-ANN-SN and POD-ANN-RN results are obtained using M = 10 neurons
in the hidden layer. Note that the exact solution projected to the reduced order space is shown with the
black solid line with circles.
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Figure 7: Numerical assessments of the POD-GP and POD-ANN models with R = 6 POD modes applied
to the Burgers problem at Re = 2000, where the training set includes snapshots between Re = 100 and
Re = 1000. The non-intrusive POD-ANN-SN and POD-ANN-RN results are obtained using M = 10 neurons
in the hidden layer. Note that the exact solution projected to the reduced order space is shown with the
black solid line with circles.
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Table 1: The relative information content (RIC) index that measures the percentage of captured energy for
different number of POD modes.

R RIC(%)

1 70.0273
2 87.1354
3 93.0921
4 95.9237
5 97.3327
6 98.2723
10 99.6722
20 99.9897
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Table 2: A comparison of intrusive and non-intrusive methodologies describing strengths and weaknesses
for each framework.

Intrusive ROMs (POD-GP) Non-intrusive ROMs (POD-ANN)

+ Solid foundations based on physics and
first principles (high interpretability)

- Mostly blackbox solvers and packages
(low interpretability)

- Need access to the governing equations + Only need observed/measured data
+ Generalizes well to new problems with

similar physics
- Poor generalization on unseen prob-

lems
- Implementations are mostly problem

dependent
+ Extremely convenient for tensor based

computing
+ Numerical analysis is easier - Hard to establish rules for its conver-

gence, stability, and energy conserva-
tion
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