DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The grain-size effect on thermal conductivity of uranium dioxide

Abstract

We have investigated the grain-boundary scattering effect on the thermal transport behavior of uranium dioxide (UO2). The polycrystalline samples having different grain-sizes (0.125, 1.8, and 7:2 µm) have been prepared by a spark plasma sintering technique and characterized by x-ray powder diffraction, scanning electron microscope, and Raman spectroscopy. The thermal transport properties (the thermal conductivity and thermoelectric power) have been measured in the temperature range of 2–300 K, and the results were analyzed in terms of various physical parameters contributing to thermal conductivity in these materials in relation to grain-size. We show that thermal conductivity decreases systematically with lowering grain-size in the temperatures below 30 K, where the boundary scattering dominates the thermal transport. At higher temperatures, more scattering processes are involved in the heat transport in these materials, making the analysis difficult. We determined the grain-boundary Kapitza resistance that would result in the observed increase in thermal conductivity with grain-size and compared the value with Kapitza resistances calculated for UO2 using molecular dynamics from the literature.

Authors:
 [1];  [2];  [3];  [1];  [4];  [4]; ORCiD logo [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
  2. Idaho National Lab. (INL), Idaho Falls, ID (United States); Rensselaer Polytechnic Inst., Troy, NY (United States)
  3. Rensselaer Polytechnic Inst., Troy, NY (United States)
  4. Univ. of Florida, Gainesville, FL (United States)
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1581148
Alternate Identifier(s):
OSTI ID: 1567715
Report Number(s):
INL/JOU-19-54003-Rev000
Journal ID: ISSN 0021-8979; TRN: US2101861
Grant/Contract Number:  
AC07-05ID14517; Advanced Fuel Campaign
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 126; Journal Issue: 12; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 36 MATERIALS SCIENCE; thermal conductivity; uranium dioxide

Citation Formats

Shrestha, K., Yao, T., Lian, J., Antonio, D., Sessim, M., Tonks, M. R., and Gofryk, Krzysztof. The grain-size effect on thermal conductivity of uranium dioxide. United States: N. p., 2019. Web. doi:10.1063/1.5116372.
Shrestha, K., Yao, T., Lian, J., Antonio, D., Sessim, M., Tonks, M. R., & Gofryk, Krzysztof. The grain-size effect on thermal conductivity of uranium dioxide. United States. https://doi.org/10.1063/1.5116372
Shrestha, K., Yao, T., Lian, J., Antonio, D., Sessim, M., Tonks, M. R., and Gofryk, Krzysztof. Sat . "The grain-size effect on thermal conductivity of uranium dioxide". United States. https://doi.org/10.1063/1.5116372. https://www.osti.gov/servlets/purl/1581148.
@article{osti_1581148,
title = {The grain-size effect on thermal conductivity of uranium dioxide},
author = {Shrestha, K. and Yao, T. and Lian, J. and Antonio, D. and Sessim, M. and Tonks, M. R. and Gofryk, Krzysztof},
abstractNote = {We have investigated the grain-boundary scattering effect on the thermal transport behavior of uranium dioxide (UO2). The polycrystalline samples having different grain-sizes (0.125, 1.8, and 7:2 µm) have been prepared by a spark plasma sintering technique and characterized by x-ray powder diffraction, scanning electron microscope, and Raman spectroscopy. The thermal transport properties (the thermal conductivity and thermoelectric power) have been measured in the temperature range of 2–300 K, and the results were analyzed in terms of various physical parameters contributing to thermal conductivity in these materials in relation to grain-size. We show that thermal conductivity decreases systematically with lowering grain-size in the temperatures below 30 K, where the boundary scattering dominates the thermal transport. At higher temperatures, more scattering processes are involved in the heat transport in these materials, making the analysis difficult. We determined the grain-boundary Kapitza resistance that would result in the observed increase in thermal conductivity with grain-size and compared the value with Kapitza resistances calculated for UO2 using molecular dynamics from the literature.},
doi = {10.1063/1.5116372},
journal = {Journal of Applied Physics},
number = 12,
volume = 126,
place = {United States},
year = {Sat Sep 28 00:00:00 EDT 2019},
month = {Sat Sep 28 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ultrafast Hopping Dynamics of 5 f Electrons in the Mott Insulator UO 2 Studied by Femtosecond Pump-Probe Spectroscopy
journal, May 2011


Kapitza Resistance
journal, January 1969


Molecular Dynamics study of the effects of non-stoichiometry and oxygen Frenkel pairs on the thermal conductivity of uranium dioxide
journal, February 2013


Measurement of the Kapitza resistance across a bicrystal interface
journal, April 2011

  • Hurley, D. H.; Khafizov, M.; Shinde, S. L.
  • Journal of Applied Physics, Vol. 109, Issue 8
  • DOI: 10.1063/1.3573511

Predicting material release during a nuclear reactor accident
journal, February 2015

  • Konings, Rudy J. M.; Wiss, Thierry; Beneš, Ondřej
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4224

Influence of electron-phonon interaction on the lattice thermal conductivity of Co 1 x Ni x Sb 3
journal, February 2002


Thermal Properties of UO2 by Molecular Dynamics Simulation
journal, January 2011

  • Uchida, Teppei; Sunaoshi, Takeo; Kato, Masato
  • Progress in Nuclear Science and Technology, Vol. 2, Issue 0
  • DOI: 10.15669/pnst.2.598

Thermal Conductivity in Nanocrystalline Ceria Thin Films
journal, December 2013

  • Khafizov, Marat; Park, In-Wook; Chernatynskiy, Aleksandr
  • Journal of the American Ceramic Society, Vol. 97, Issue 2
  • DOI: 10.1111/jace.12673

Electrical Conductivity and Thermoelectric Power of Uranium Dioxide
journal, March 2005


Thermal transport properties of uranium dioxide by molecular dynamics simulations
journal, April 2008


Thermal Conductivity of Uranium Dioxide from -57o to 1100oC by a Radial Heat Flow Technique
journal, June 1965


Electrical Properties of Non-Stoichiometric Uranium Dioxide
journal, November 1965

  • Iida, Shoji
  • Japanese Journal of Applied Physics, Vol. 4, Issue 11
  • DOI: 10.1143/JJAP.4.833

Thermal conductivity of hyperstoichiometric SIMFUEL
journal, May 1995


Iron valence in skutterudites: Transport and magnetic properties of Co 1 x Fe x Sb 3
journal, December 2000


Thermal Conductivity and Thermal Radiation Properties of UO 2
journal, January 1976


The effects of grain size and grain boundary characteristics on the thermal conductivity of nanocrystalline diamond
journal, February 2016

  • Spiteri, David; Anaya, Julian; Kuball, Martin
  • Journal of Applied Physics, Vol. 119, Issue 8
  • DOI: 10.1063/1.4942522

Effect of Isotopes on Low-Temperature Thermal Conductivity
journal, February 1957


Thermal conductivity of uranium dioxide by nonequilibrium molecular dynamics simulation
journal, July 1999

  • Motoyama, Satoshi; Ichikawa, Yasushi; Hiwatari, Yasuaki
  • Physical Review B, Vol. 60, Issue 1
  • DOI: 10.1103/PhysRevB.60.292

Anisotropic thermal conductivity in uranium dioxide
journal, August 2014

  • Gofryk, K.; Du, S.; Stanek, C. R.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5551

Lattice Thermal Conductivity of Germanium-Silicon Alloy Single Crystals at Low Temperatures
journal, April 1961


Thermal Conductivity of Nearly Stoichiometric Single-Crystal and Polycrystalline UO 2
journal, January 1971


Lattice Thermal Conductivity at Low Temperatures
journal, April 1962


Evaluation of Thermal Conductivity of Hyperstoichiometric UO2+x by Molecular Dynamics Simulation
journal, April 2007

  • Yamasaki, Sho; Arima, Tatsumi; Idemitsu, Kazuya
  • International Journal of Thermophysics, Vol. 28, Issue 2
  • DOI: 10.1007/s10765-007-0170-6

Some optical properties of intrinsic and doped UO2 thin films
journal, April 2005


A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: Review and recommendations
journal, September 1996


The Effect of Grain Size and Density on the Thermoelectric Properties of Bi2Te3-PbTe Compounds
journal, October 2013

  • Yoon, Sejin; Kwon, O-Jong; Ahn, Seunghyun
  • Journal of Electronic Materials, Vol. 42, Issue 12
  • DOI: 10.1007/s11664-013-2753-2

The Thermoelectric Power and the Conduction Mechanism in Nearly Stoichiometric Uranium Dioxide Single Crystals
journal, January 1969


The Heat Capacities of Uranium, Uranium Trioxide, and Uranium Dioxide from 15°K to 300°K
journal, April 1952

  • Jones, W. M.; Gordon, Joseph; Long, E. A.
  • The Journal of Chemical Physics, Vol. 20, Issue 4
  • DOI: 10.1063/1.1700518

Effect of grain sizes and shapes on phonon thermal conductivity of bulk thermoelectric materials
journal, July 2011

  • Wang, Xingzhe; Yang, Yumei; Zhu, Linli
  • Journal of Applied Physics, Vol. 110, Issue 2
  • DOI: 10.1063/1.3611421

Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations
journal, September 2013


Magnetic, transport, and thermal properties of the half-Heusler compounds ErPdSb and YPdSb
journal, June 2007


916. Low-temperature magnetic properties of some uranium oxides
journal, January 1963

  • Leask, M. J. M.; Roberts, L. E. J.; Walter, A. J.
  • Journal of the Chemical Society (Resumed)
  • DOI: 10.1039/jr9630004788

The Crystal Dynamics of Uranium Dioxide
journal, August 1965

  • Dolling, G.; Cowley, R. A.; Woods, A. D. B.
  • Canadian Journal of Physics, Vol. 43, Issue 8
  • DOI: 10.1139/p65-135

Electronic transitions, crystal field effects and phonons in UO2
journal, August 1980


Model for Lattice Thermal Conductivity at Low Temperatures
journal, February 1959


TiO2 doped UO2 fuels sintered by spark plasma sintering
journal, February 2016


Nanoscale thermal transport
journal, January 2003

  • Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.
  • Journal of Applied Physics, Vol. 93, Issue 2, p. 793-818
  • DOI: 10.1063/1.1524305

Thermal conductivity of silicon at low temperatures
journal, June 1961