DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluating the impacts of amino acids in the second and outer coordination spheres of Rh-bis(diphosphine) complexes for CO2 hydrogenation

Abstract

To explore the influence of a biologically inspired second and outer coordination sphere on Rh-bis(diphosphine) CO2 hydrogenation catalysts, a series of five complexes were prepared by varying the substituents on the pendant amine in the P(Et)2CH2NRCH2P(Et)2 ligands (PEtNRPEt), where R consists of methyl ester modified amino acids, including three neutral (glycine methyl ester (GlyOMe), leucine methyl ester (LeuOMe), and phenylalanine methyl ester (PheOMe)), one acidic (aspartic acid dimethyl ester (AspOMe)) and one basic (histidine methyl ester (MeHisOMe)) amino acid esters. The turnover frequencies (TOFs) for CO2 hydrogenation for each of these complexes were compared to those of the non-amino acid containing [Rh(depp)2]+ (depp) and [Rh(PEtNMePEt)2]+ (NMe) complexes. Each complex is catalytically active for CO2 hydrogenation to formate under mild conditions in THF. Catalytic activity spanned a factor of four, with the most active species being the NMe catalyst, while the slowest were the GlyOMe and the AspOMe complexes. Finally, when compared to a similar set of catalysts with phenyl-substituted phosphorous groups, a clear contribution of the outer coordination sphere is seen for this family of CO2 hydrogenation catalysts.

Authors:
ORCiD logo [1];  [1];  [2];  [3];  [4];  [5]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Sciences Directorate; Ferro Corporation, Penn Yan, NY (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Sciences Directorate; Rutgers Univ., Piscataway, NJ (United States)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Sciences Directorate
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Sciences Directorate; Curium, Maryland Heights, MO (United States)
  5. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Sciences Directorate; Univ. of Wisconsin-Oshkosh, Oshkosh, WI (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Molecular Electrocatalysis (CME); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1571505
Alternate Identifier(s):
OSTI ID: 1507444
Report Number(s):
PNNL-SA-139812
Journal ID: ISSN 1359-6640; FDISE6
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Faraday Discussions
Additional Journal Information:
Journal Volume: 215; Journal ID: ISSN 1359-6640
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Walsh, Aaron P., Laureanti, Joseph A., Katipamula, Sriram, Chambers, Geoffrey M., Priyadarshani, Nilusha, Lense, Sheri, Bays, J. Timothy, Linehan, John C., and Shaw, Wendy J. Evaluating the impacts of amino acids in the second and outer coordination spheres of Rh-bis(diphosphine) complexes for CO2 hydrogenation. United States: N. p., 2018. Web. doi:10.1039/c8fd00164b.
Walsh, Aaron P., Laureanti, Joseph A., Katipamula, Sriram, Chambers, Geoffrey M., Priyadarshani, Nilusha, Lense, Sheri, Bays, J. Timothy, Linehan, John C., & Shaw, Wendy J. Evaluating the impacts of amino acids in the second and outer coordination spheres of Rh-bis(diphosphine) complexes for CO2 hydrogenation. United States. https://doi.org/10.1039/c8fd00164b
Walsh, Aaron P., Laureanti, Joseph A., Katipamula, Sriram, Chambers, Geoffrey M., Priyadarshani, Nilusha, Lense, Sheri, Bays, J. Timothy, Linehan, John C., and Shaw, Wendy J. Fri . "Evaluating the impacts of amino acids in the second and outer coordination spheres of Rh-bis(diphosphine) complexes for CO2 hydrogenation". United States. https://doi.org/10.1039/c8fd00164b. https://www.osti.gov/servlets/purl/1571505.
@article{osti_1571505,
title = {Evaluating the impacts of amino acids in the second and outer coordination spheres of Rh-bis(diphosphine) complexes for CO2 hydrogenation},
author = {Walsh, Aaron P. and Laureanti, Joseph A. and Katipamula, Sriram and Chambers, Geoffrey M. and Priyadarshani, Nilusha and Lense, Sheri and Bays, J. Timothy and Linehan, John C. and Shaw, Wendy J.},
abstractNote = {To explore the influence of a biologically inspired second and outer coordination sphere on Rh-bis(diphosphine) CO2 hydrogenation catalysts, a series of five complexes were prepared by varying the substituents on the pendant amine in the P(Et)2CH2NRCH2P(Et)2 ligands (PEtNRPEt), where R consists of methyl ester modified amino acids, including three neutral (glycine methyl ester (GlyOMe), leucine methyl ester (LeuOMe), and phenylalanine methyl ester (PheOMe)), one acidic (aspartic acid dimethyl ester (AspOMe)) and one basic (histidine methyl ester (MeHisOMe)) amino acid esters. The turnover frequencies (TOFs) for CO2 hydrogenation for each of these complexes were compared to those of the non-amino acid containing [Rh(depp)2]+ (depp) and [Rh(PEtNMePEt)2]+ (NMe) complexes. Each complex is catalytically active for CO2 hydrogenation to formate under mild conditions in THF. Catalytic activity spanned a factor of four, with the most active species being the NMe catalyst, while the slowest were the GlyOMe and the AspOMe complexes. Finally, when compared to a similar set of catalysts with phenyl-substituted phosphorous groups, a clear contribution of the outer coordination sphere is seen for this family of CO2 hydrogenation catalysts.},
doi = {10.1039/c8fd00164b},
journal = {Faraday Discussions},
number = ,
volume = 215,
place = {United States},
year = {Fri Nov 30 00:00:00 EST 2018},
month = {Fri Nov 30 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Depth of Chemical Time and the Power of Enzymes as Catalysts
journal, December 2001

  • Wolfenden, Richard; Snider, Mark J.
  • Accounts of Chemical Research, Vol. 34, Issue 12
  • DOI: 10.1021/ar000058i

The use of supercritical fluids as solvents for NMR spectroscopy
journal, October 2005

  • Yonker, Clement R.; Linehan, John C.
  • Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 47, Issue 1-2, p. 95-109
  • DOI: 10.1016/j.pnmrs.2005.08.002

Incorporation of Pendant Bases into Rh(diphosphine) 2 Complexes: Synthesis, Thermodynamic Studies, And Catalytic CO 2 Hydrogenation Activity of [Rh(P 2 N 2 ) 2 ] + Complexes
journal, June 2015

  • Lilio, Alyssia M.; Reineke, Mark H.; Moore, Curtis E.
  • Journal of the American Chemical Society, Vol. 137, Issue 25
  • DOI: 10.1021/jacs.5b04291

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Minimal Proton Channel Enables H 2 Oxidation and Production with a Water-Soluble Nickel-Based Catalyst
journal, November 2013

  • Dutta, Arnab; Lense, Sheri; Hou, Jianbo
  • Journal of the American Chemical Society, Vol. 135, Issue 49
  • DOI: 10.1021/ja407826d

Arginine-Containing Ligands Enhance H 2 Oxidation Catalyst Performance
journal, May 2014

  • Dutta, Arnab; Roberts, John A. S.; Shaw, Wendy J.
  • Angewandte Chemie International Edition, Vol. 53, Issue 25
  • DOI: 10.1002/anie.201402304

A proton channel allows a hydrogen oxidation catalyst to operate at a moderate overpotential with water acting as a base
journal, January 2014

  • Lense, Sheri; Dutta, Arnab; Roberts, John A. S.
  • Chem. Commun., Vol. 50, Issue 7
  • DOI: 10.1039/C3CC46829A

Solar-driven proton and carbon dioxide reduction to fuels — lessons from metalloenzymes
journal, April 2015


Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases
journal, August 2013

  • Fujita, Etsuko; Muckerman, James T.; Himeda, Yuichiro
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 8-9
  • DOI: 10.1016/j.bbabio.2012.11.004

Electrochemical oxidation of Rh(I) to Rh(III) in rhodium(I) β-diketonato carbonyl phosphine complexes
journal, November 2000


The Role of Solvent and the Outer Coordination Sphere on H 2 Oxidation Using [Ni(P Cy 2 N Pyz 2 ) 2 ] 2+ : The Role of Solvent and the Outer Coordination Sphere on H
journal, October 2015

  • Dutta, Arnab; Lense, Sheri; Roberts, John A. S.
  • European Journal of Inorganic Chemistry, Vol. 2015, Issue 31
  • DOI: 10.1002/ejic.201500732

Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake
journal, April 2015


Design of a single protein that spans the entire 2-V range of physiological redox potentials
journal, December 2015

  • Hosseinzadeh, Parisa; Marshall, Nicholas M.; Chacón, Kelly N.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 2
  • DOI: 10.1073/pnas.1515897112

The Influence of the Second and Outer Coordination Spheres on Rh(diphosphine) 2 CO 2 Hydrogenation Catalysts
journal, September 2014

  • Bays, J. Timothy; Priyadarshani, Nilusha; Jeletic, Matthew S.
  • ACS Catalysis, Vol. 4, Issue 10
  • DOI: 10.1021/cs5009199

Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO 2 Reduction Catalyst
journal, June 2011

  • Schmeier, Timothy J.; Dobereiner, Graham E.; Crabtree, Robert H.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja2035514

Designing electrochemically reversible H2 oxidation and production catalysts
journal, August 2018


[Ni(Et 2 PCH 2 NMeCH 2 PEt 2 ) 2 ] 2+ as a Functional Model for Hydrogenases
journal, January 2003

  • Curtis, Calvin J.; Miedaner, Alex; Ciancanelli, Rebecca
  • Inorganic Chemistry, Vol. 42, Issue 1
  • DOI: 10.1021/ic020610v

Second-coordination-sphere and electronic effects enhance iridium(iii)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure
journal, January 2012

  • Wang, Wan-Hui; Hull, Jonathan F.; Muckerman, James T.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21888g

Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H 2 Production
journal, March 2018

  • Klug, Christina M.; Cardenas, Allan Jay P.; Bullock, R. Morris
  • ACS Catalysis, Vol. 8, Issue 4
  • DOI: 10.1021/acscatal.7b04379

OLEX2 : a complete structure solution, refinement and analysis program
journal, January 2009

  • Dolomanov, Oleg V.; Bourhis, Luc J.; Gildea, Richard J.
  • Journal of Applied Crystallography, Vol. 42, Issue 2
  • DOI: 10.1107/S0021889808042726

Controlling Proton Delivery through Catalyst Structural Dynamics
journal, September 2016

  • Cardenas, Allan Jay P.; Ginovska, Bojana; Kumar, Neeraj
  • Angewandte Chemie International Edition, Vol. 55, Issue 43
  • DOI: 10.1002/anie.201607460

Ab Initio Calculations of Thermodynamic Hydricities of Transition-Metal Hydrides in Acetonitrile
journal, August 2007

  • Qi, Xiu-Juan; Fu, Yao; Liu, Lei
  • Organometallics, Vol. 26, Issue 17
  • DOI: 10.1021/om0702429

Artificial Metalloenzymes: Reaction Scope and Optimization Strategies
journal, May 2017


Amino acid modified Ni catalyst exhibits reversible H 2 oxidation/production over a broad pH range at elevated temperatures
journal, November 2014

  • Dutta, Arnab; DuBois, Daniel L.; Roberts, John A. S.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 46
  • DOI: 10.1073/pnas.1416381111

Protein Design: Toward Functional Metalloenzymes
journal, January 2014

  • Yu, Fangting; Cangelosi, Virginia M.; Zastrow, Melissa L.
  • Chemical Reviews, Vol. 114, Issue 7
  • DOI: 10.1021/cr400458x

Optimizing conditions for utilization of an H 2 oxidation catalyst with outer coordination sphere functionalities
journal, January 2016

  • Dutta, Arnab; Ginovska, Bojana; Raugei, Simone
  • Dalton Transactions, Vol. 45, Issue 24
  • DOI: 10.1039/C6DT00280C

Electrocatalytic and homogeneous approaches to conversion of CO 2 to liquid fuels
journal, January 2009

  • Benson, Eric E.; Kubiak, Clifford P.; Sathrum, Aaron J.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B804323J

Achieving Reversible H 2 /H + Interconversion at Room Temperature with Enzyme-Inspired Molecular Complexes: A Mechanistic Study
journal, August 2016


CO 2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand
journal, February 2015

  • Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi
  • Inorganic Chemistry, Vol. 54, Issue 11
  • DOI: 10.1021/ic502904q

Beyond the Active Site: The Impact of the Outer Coordination Sphere on Electrocatalysts for Hydrogen Production and Oxidation
journal, June 2014

  • Ginovska-Pangovska, Bojana; Dutta, Arnab; Reback, Matthew L.
  • Accounts of Chemical Research, Vol. 47, Issue 8
  • DOI: 10.1021/ar5001742

Borinic acid catalysed peptide synthesis
journal, January 2015

  • El Dine, Tharwat Mohy; Rouden, Jacques; Blanchet, Jérôme
  • Chemical Communications, Vol. 51, Issue 89
  • DOI: 10.1039/C5CC06177F

Structural and Functional Aspects of Metal Sites in Biology
journal, January 1996

  • Holm, Richard H.; Kennepohl, Pierre; Solomon, Edward I.
  • Chemical Reviews, Vol. 96, Issue 7
  • DOI: 10.1021/cr9500390

Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation
journal, June 2013

  • Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr300463y

Ab Initio Calculations of p K a Values of Transition-Metal Hydrides in Acetonitrile
journal, December 2006

  • Qi, Xiu-Juan; Liu, Lei; Fu, Yao
  • Organometallics, Vol. 25, Issue 25
  • DOI: 10.1021/om0608859

Hydride Transfer from Rhodium Complexes to Triethylborane
journal, August 2006

  • DuBois, Daniel L.; Blake, Daniel M.; Miedaner, Alex
  • Organometallics, Vol. 25, Issue 18
  • DOI: 10.1021/om060584z

Development of Molecular Electrocatalysts for Energy Storage
journal, February 2014


Arginine-Containing Ligands Enhance H 2 Oxidation Catalyst Performance
journal, May 2014

  • Dutta, Arnab; Roberts, John A. S.; Shaw, Wendy J.
  • Angewandte Chemie, Vol. 126, Issue 25
  • DOI: 10.1002/ange.201402304

Controlling Proton Delivery through Catalyst Structural Dynamics
journal, September 2016

  • Cardenas, Allan Jay P.; Ginovska, Bojana; Kumar, Neeraj
  • Angewandte Chemie, Vol. 128, Issue 43
  • DOI: 10.1002/ange.201607460

The Use of Supercritical Fluids as Solvents for NMR Spectroscopy
journal, April 2006