DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrahigh-pressure isostructural electronic transitions in hydrogen

Abstract

High-pressure transitions are thought to modify hydrogen molecules to a molecular metallic solid and finally to an atomic metal, which is predicted to have exotic physical properties and the topology of a two-component (electron and proton) superconducting superfluid condensate. Therefore, understanding such transitions remains an important objective in condensed matter physics. However, measurements of the crystal structure of solid hydrogen, which provides crucial information about the metallization of hydrogen under compression, are lacking for most high-pressure phases, owing to the considerable technical challenges involved in X-ray and neutron diffraction measurements under extreme conditions. Here we present a single-crystal X-ray diffraction study of solid hydrogen at pressures of up to 254 gigapascals that reveals the crystallographic nature of the transitions from phase I to phases III and IV. Under compression, hydrogen molecules remain in the hexagonal close packed (hcp) crystal lattice structure, accompanied by a monotonic increase in anisotropy. In addition, the pressure-dependent decrease of the unit cell volume exhibits a slope change when entering phase IV, suggesting a second-order isostructural phase transition. Furthermore, our results indicate that the precursor to the exotic two-component atomic hydrogen may consist of electronic transitions caused by a highly distorted hcp Brillouin zone and molecular-symmetrymore » breaking.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [5];  [5];  [6];  [6];  [7];  [4];  [8];  [8];  [3];  [3];  [6];  [4];  [9];  [6]
  1. Center for High Pressure Science and Technology Advanced Research, Beijing (China); Carnegie Institution of Washington, Argonne, IL (United States)
  2. Center for High Pressure Science and Technology Advanced Research, Beijing (China); Florida International Univ., Miami, FL (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Carnegie Institution of Washington, Argonne, IL (United States); Argonne National Lab. (ANL), Lemont, IL (United States)
  5. Uppsala Univ., Uppsala (Sweden)
  6. Center for High Pressure Science and Technology Advanced Research, Beijing (China)
  7. Carnegie Institution of Washington, Argonne, IL (United States); DAC Tools LLC, Naperville, IL (United States)
  8. Univ. of Chicago, Chicago, IL (United States)
  9. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); Swedish Research Council (SRC); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division, Midwest Integrated Center for Computational Materials (MICCoM); National Science Foundation (NSF)
OSTI Identifier:
1567058
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 573; Journal Issue: 7775; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Ji, Cheng, Li, Bing, Liu, Wenjun, Smith, Jesse S., Majumdar, Arnab, Luo, Wei, Ahuja, Rajeev, Shu, Jinfu, Wang, Junyue, Sinogeikin, Stanislav, Meng, Yue, Prakapenka, Vitali B., Greenberg, Eran, Xu, Ruqing, Huang, Xianrong, Yang, Wenge, Shen, Guoyin, Mao, Wendy L., and Mao, Ho-Kwang. Ultrahigh-pressure isostructural electronic transitions in hydrogen. United States: N. p., 2019. Web. doi:10.1038/s41586-019-1565-9.
Ji, Cheng, Li, Bing, Liu, Wenjun, Smith, Jesse S., Majumdar, Arnab, Luo, Wei, Ahuja, Rajeev, Shu, Jinfu, Wang, Junyue, Sinogeikin, Stanislav, Meng, Yue, Prakapenka, Vitali B., Greenberg, Eran, Xu, Ruqing, Huang, Xianrong, Yang, Wenge, Shen, Guoyin, Mao, Wendy L., & Mao, Ho-Kwang. Ultrahigh-pressure isostructural electronic transitions in hydrogen. United States. https://doi.org/10.1038/s41586-019-1565-9
Ji, Cheng, Li, Bing, Liu, Wenjun, Smith, Jesse S., Majumdar, Arnab, Luo, Wei, Ahuja, Rajeev, Shu, Jinfu, Wang, Junyue, Sinogeikin, Stanislav, Meng, Yue, Prakapenka, Vitali B., Greenberg, Eran, Xu, Ruqing, Huang, Xianrong, Yang, Wenge, Shen, Guoyin, Mao, Wendy L., and Mao, Ho-Kwang. Wed . "Ultrahigh-pressure isostructural electronic transitions in hydrogen". United States. https://doi.org/10.1038/s41586-019-1565-9. https://www.osti.gov/servlets/purl/1567058.
@article{osti_1567058,
title = {Ultrahigh-pressure isostructural electronic transitions in hydrogen},
author = {Ji, Cheng and Li, Bing and Liu, Wenjun and Smith, Jesse S. and Majumdar, Arnab and Luo, Wei and Ahuja, Rajeev and Shu, Jinfu and Wang, Junyue and Sinogeikin, Stanislav and Meng, Yue and Prakapenka, Vitali B. and Greenberg, Eran and Xu, Ruqing and Huang, Xianrong and Yang, Wenge and Shen, Guoyin and Mao, Wendy L. and Mao, Ho-Kwang},
abstractNote = {High-pressure transitions are thought to modify hydrogen molecules to a molecular metallic solid and finally to an atomic metal, which is predicted to have exotic physical properties and the topology of a two-component (electron and proton) superconducting superfluid condensate. Therefore, understanding such transitions remains an important objective in condensed matter physics. However, measurements of the crystal structure of solid hydrogen, which provides crucial information about the metallization of hydrogen under compression, are lacking for most high-pressure phases, owing to the considerable technical challenges involved in X-ray and neutron diffraction measurements under extreme conditions. Here we present a single-crystal X-ray diffraction study of solid hydrogen at pressures of up to 254 gigapascals that reveals the crystallographic nature of the transitions from phase I to phases III and IV. Under compression, hydrogen molecules remain in the hexagonal close packed (hcp) crystal lattice structure, accompanied by a monotonic increase in anisotropy. In addition, the pressure-dependent decrease of the unit cell volume exhibits a slope change when entering phase IV, suggesting a second-order isostructural phase transition. Furthermore, our results indicate that the precursor to the exotic two-component atomic hydrogen may consist of electronic transitions caused by a highly distorted hcp Brillouin zone and molecular-symmetry breaking.},
doi = {10.1038/s41586-019-1565-9},
journal = {Nature (London)},
number = 7775,
volume = 573,
place = {United States},
year = {Wed Sep 25 00:00:00 EDT 2019},
month = {Wed Sep 25 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 67 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team
journal, July 2015

  • Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric
  • Review of Scientific Instruments, Vol. 86, Issue 7
  • DOI: 10.1063/1.4926889

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state
journal, January 2001

  • Speziale, Sergio; Zha, Chang-Sheng; Duffy, Thomas S.
  • Journal of Geophysical Research: Solid Earth, Vol. 106, Issue B1
  • DOI: 10.1029/2000JB900318

Structure of phase III of solid hydrogen
journal, May 2007

  • Pickard, Chris J.; Needs, Richard J.
  • Nature Physics, Vol. 3, Issue 7
  • DOI: 10.1038/nphys625

A superconductor to superfluid phase transition in liquid metallic hydrogen
journal, October 2004

  • Babaev, Egor; Sudbø, Asle; Ashcroft, N. W.
  • Nature, Vol. 431, Issue 7009
  • DOI: 10.1038/nature02910

Multimode scanning X-ray diffraction microscopy for diamond anvil cell experiments
journal, February 2019

  • Hrubiak, Rostislav; Smith, Jesse S.; Shen, Guoyin
  • Review of Scientific Instruments, Vol. 90, Issue 2
  • DOI: 10.1063/1.5057518

Projector augmented-wave method
journal, December 1994


Structure and Metallicity of Phase V of Hydrogen
journal, June 2018


Evidence for a new phase of dense hydrogen above 325 gigapascals
journal, January 2016

  • Dalladay-Simpson, Philip; Howie, Ross T.; Gregoryanz, Eugene
  • Nature, Vol. 529, Issue 7584
  • DOI: 10.1038/nature16164

Beyond sixfold coordinated Si in SiO 2 glass at ultrahigh pressures
journal, September 2017

  • Prescher, Clemens; Prakapenka, Vitali B.; Stefanski, Johannes
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 38
  • DOI: 10.1073/pnas.1708882114

An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions
journal, August 2014

  • Mostofi, Arash A.; Yates, Jonathan R.; Pizzi, Giovanni
  • Computer Physics Communications, Vol. 185, Issue 8
  • DOI: 10.1016/j.cpc.2014.05.003

Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285 GPa
journal, November 2001

  • Goncharov, A. F.; Gregoryanz, E.; Hemley, R. J.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 25
  • DOI: 10.1073/pnas.201528198

Solids, liquids, and gases under high pressure
journal, March 2018


Density functional theory study of phase IV of solid hydrogen
journal, June 2012

  • Pickard, Chris J.; Martinez-Canales, Miguel; Needs, Richard J.
  • Physical Review B, Vol. 85, Issue 21
  • DOI: 10.1103/PhysRevB.85.214114

X-ray diffraction and equation of state of hydrogen at megabar pressures
journal, October 1996

  • Loubeyre, P.; LeToullec, R.; Hausermann, D.
  • Nature, Vol. 383, Issue 6602
  • DOI: 10.1038/383702a0

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Anharmonicity and the equation of state for gold
journal, February 1989

  • Anderson, Orson L.; Isaak, Donald G.; Yamamoto, Shigeru
  • Journal of Applied Physics, Vol. 65, Issue 4
  • DOI: 10.1063/1.342969

Topological transitions of the Fermi surface of osmium under pressure: an LDA+DMFT study
journal, March 2017

  • Feng, Qingguo; Ekholm, Marcus; Tasnádi, Ferenc
  • New Journal of Physics, Vol. 19, Issue 3
  • DOI: 10.1088/1367-2630/aa5f8e

Mixed Molecular and Atomic Phase of Dense Hydrogen
journal, March 2012


Phase Transition in Solid Molecular Hydrogen at Ultrahigh Pressures
journal, August 1988


Synchrotron X-ray Diffraction Measurements of Single-Crystal Hydrogen to 26.5 Gigapascals
journal, March 1988


Raman scattering and X-ray diffraction studies on phase III of solid hydrogen
journal, October 2017


Raman excitations and orientational ordering in deuterium at high pressure
journal, December 1996


Anisotropic distortion and Lifshitz transition in α -Hf under pressure
journal, March 2017


Quantum and Classical Orientational Ordering in Solid Hydrogen
journal, February 1997


A quantum fluid of metallic hydrogen suggested by first-principles calculations
journal, October 2004

  • Bonev, Stanimir A.; Schwegler, Eric; Ogitsu, Tadashi
  • Nature, Vol. 431, Issue 7009
  • DOI: 10.1038/nature02968

Room-temperature structures of solid hydrogen at high pressures
journal, August 2012

  • Liu, Hanyu; Zhu, Li; Cui, Wenwen
  • The Journal of Chemical Physics, Vol. 137, Issue 7
  • DOI: 10.1063/1.4745186

DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


EosFit7-GUI : a new graphical user interface for equation of state calculations, analyses and teaching
journal, June 2016

  • Gonzalez-Platas, Javier; Alvaro, Matteo; Nestola, Fabrizio
  • Journal of Applied Crystallography, Vol. 49, Issue 4
  • DOI: 10.1107/S1600576716008050

Importance of Correlation Effects in hcp Iron Revealed by a Pressure-Induced Electronic Topological Transition
journal, March 2013


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Proton tunneling in phase IV of hydrogen and deuterium
journal, December 2012


Orientational phase transitions in hydrogen at megabar pressures
journal, April 1990

  • Lorenzana, Hector E.; Silvera, Isaac F.; Goettel, Kenneth A.
  • Physical Review Letters, Vol. 64, Issue 16
  • DOI: 10.1103/PhysRevLett.64.1939

On the Possibility of a Metallic Modification of Hydrogen
journal, December 1935

  • Wigner, E.; Huntington, H. B.
  • The Journal of Chemical Physics, Vol. 3, Issue 12
  • DOI: 10.1063/1.1749590

Ultrahigh-pressure transitions in solid hydrogen
journal, April 1994


Single-crystal x-ray diffraction of n - H 2 at high pressure
journal, September 1987


High-Pressure Behavior of Hydrogen and Deuterium at Low Temperatures
journal, August 2017


Nanoprobe measurements of materials at megabar pressures
journal, March 2010

  • Wang, L.; Ding, Y.; Yang, W.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 14
  • DOI: 10.1073/pnas.1001141107

Pressure calibration of diamond anvil Raman gauge to 410 GPa
journal, March 2010


Conductive dense hydrogen
journal, November 2011

  • Eremets, M. I.; Troyan, I. A.
  • Nature Materials, Vol. 10, Issue 12
  • DOI: 10.1038/nmat3175

Fityk : a general-purpose peak fitting program
journal, September 2010


Electronic topological transition and noncollinear magnetism in compressed hcp Co
journal, October 2015


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Electronic structure of AlFeN films exhibiting crystallographic orientation change from c- to a-axis with Fe concentrations and annealing effect
journal, February 2020


Hexagonal structure of phase III of solid hydrogen
text, January 2016

  • Monserrat, B.; Needs, Rj; Gregoryanz, E.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.6221

Reactivity of Hydrogen-Helium and Hydrogen-Nitrogen Mixtures at High Pressures
text, January 2018

  • Turnbull, Robin; Donnelly, Mary-Ellen; Wang, Mengnan
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2018-04750

Structure and metallicity of phase V of hydrogen
text, January 2018

  • Monserrat Sanchez, Bartomeu; Drummond, Neil D.; Dalladay-Simpson, Philip
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.30590

Density functional theory study of phase IV of solid hydrogen
text, January 2012


Room-Temperature Structures of Solid Hydrogen at High Pressures
text, January 2012


Electronic topological transition and non-collinear magnetism in compressed hcp Co
text, January 2015


A simple thermodynamic model for the hydrogen phase diagram
text, January 2017


A superconductor to superfluid phase transition in liquid metallic hydrogen
text, January 2004


Quantum and Classical Orientational Ordering in Solid Hydrogen
text, January 1996


Works referencing / citing this record:

Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen
journal, January 2020


Intermolecular coupling and fluxional behavior of hydrogen in phase IV
journal, December 2019

  • Goncharov, Alexander F.; Chuvashova, Irina; Ji, Cheng
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 51
  • DOI: 10.1073/pnas.1916385116

Quadrupole arrangements and the ground state of solid hydrogen
journal, January 2020


Compression behavior of dense H 2 He mixtures up to 160 GPa
journal, June 2020


Intermolecular coupling and fluxional behavior of hydrogen in phase IV
text, January 2019