DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices

Abstract

With accelerating trends in miniaturization of semiconductor devices, techniques for energy harvesting become increasingly important, especially in wearable technologies and sensors for the internet of things. Although thermoelectric systems have many attractive attributes in this context, maintaining large temperature differences across the device terminals and achieving low–thermal impedance interfaces to the surrounding environment become increasingly difficult to achieve as the characteristic dimensions decrease. Here, we propose and demonstrate an architectural solution to this problem, where thin-film active materials integrate into compliant, open three-dimensional (3D) forms. This approach not only enables efficient thermal impedance matching but also multiplies the heat flow through the harvester, thereby increasing the efficiencies for power conversion. Interconnected arrays of 3D thermoelectric coils built using microscale ribbons of monocrystalline silicon as the active material demonstrate these concepts. Quantitative measurements and simulations establish the basic operating principles and the key design features. The results suggest a scalable strategy for deploying hard thermoelectric thin-film materials in harvesters that can integrate effectively with soft materials systems, including those of the human body.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [5];  [6]; ORCiD logo [1]; ORCiD logo [7];  [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [8]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [9]
  1. Univ. of Illinois at Urbana-Champaign, IL (United States)
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States); Northwestern Univ., Evanston, IL (United States); Stanford Univ., Palo Alto, CA (United States)
  3. Northwestern Univ., Evanston, IL (United States)
  4. Yonsei Univ., Seoul (Korea)
  5. Northwestern Univ., Evanston, IL (United States); Wuhan Univ. of Technology (China)
  6. Univ. of Illinois at Urbana-Champaign, IL (United States); Univ. of Michigan, Ann Arbor, MI (United States)
  7. Univ. of Illinois at Urbana-Champaign, IL (United States); Columbia Univ., New York, NY (United States)
  8. Tsinghua Univ., Beijing (China)
  9. Univ. of Illinois at Urbana-Champaign, IL (United States); Northwestern Univ., Evanston, IL (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC); Univ. of Illinois at Urbana-Champaign, IL (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Natural Science Foundation of China (NSFC); National Science Foundation (NSF); National Research Foundation of Korea (NRF)
OSTI Identifier:
1566714
Alternate Identifier(s):
OSTI ID: 1875107
Grant/Contract Number:  
FG02-07ER46471; SC0001299
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 11; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; solar (photovoltaic); solar (thermal); solid state lighting; phonons; thermal conductivity; thermoelectric; defects; mechanical behavior; charge transport; spin dynamics; materials and chemistry by design; optics; synthesis (novel materials); synthesis (self-assembly); synthesis (scalable processing)

Citation Formats

Nan, Kewang, Kang, Stephen Dongmin, Li, Kan, Yu, Ki Jun, Zhu, Feng, Wang, Juntong, Dunn, Alison C., Zhou, Chaoqun, Xie, Zhaoqian, Agne, Matthias T., Wang, Heling, Luan, Haiwen, Zhang, Yihui, Huang, Yonggang, Snyder, G. Jeffrey, and Rogers, John A. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. United States: N. p., 2018. Web. doi:10.1126/sciadv.aau5849.
Nan, Kewang, Kang, Stephen Dongmin, Li, Kan, Yu, Ki Jun, Zhu, Feng, Wang, Juntong, Dunn, Alison C., Zhou, Chaoqun, Xie, Zhaoqian, Agne, Matthias T., Wang, Heling, Luan, Haiwen, Zhang, Yihui, Huang, Yonggang, Snyder, G. Jeffrey, & Rogers, John A. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. United States. https://doi.org/10.1126/sciadv.aau5849
Nan, Kewang, Kang, Stephen Dongmin, Li, Kan, Yu, Ki Jun, Zhu, Feng, Wang, Juntong, Dunn, Alison C., Zhou, Chaoqun, Xie, Zhaoqian, Agne, Matthias T., Wang, Heling, Luan, Haiwen, Zhang, Yihui, Huang, Yonggang, Snyder, G. Jeffrey, and Rogers, John A. Fri . "Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices". United States. https://doi.org/10.1126/sciadv.aau5849. https://www.osti.gov/servlets/purl/1566714.
@article{osti_1566714,
title = {Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices},
author = {Nan, Kewang and Kang, Stephen Dongmin and Li, Kan and Yu, Ki Jun and Zhu, Feng and Wang, Juntong and Dunn, Alison C. and Zhou, Chaoqun and Xie, Zhaoqian and Agne, Matthias T. and Wang, Heling and Luan, Haiwen and Zhang, Yihui and Huang, Yonggang and Snyder, G. Jeffrey and Rogers, John A.},
abstractNote = {With accelerating trends in miniaturization of semiconductor devices, techniques for energy harvesting become increasingly important, especially in wearable technologies and sensors for the internet of things. Although thermoelectric systems have many attractive attributes in this context, maintaining large temperature differences across the device terminals and achieving low–thermal impedance interfaces to the surrounding environment become increasingly difficult to achieve as the characteristic dimensions decrease. Here, we propose and demonstrate an architectural solution to this problem, where thin-film active materials integrate into compliant, open three-dimensional (3D) forms. This approach not only enables efficient thermal impedance matching but also multiplies the heat flow through the harvester, thereby increasing the efficiencies for power conversion. Interconnected arrays of 3D thermoelectric coils built using microscale ribbons of monocrystalline silicon as the active material demonstrate these concepts. Quantitative measurements and simulations establish the basic operating principles and the key design features. The results suggest a scalable strategy for deploying hard thermoelectric thin-film materials in harvesters that can integrate effectively with soft materials systems, including those of the human body.},
doi = {10.1126/sciadv.aau5849},
journal = {Science Advances},
number = 11,
volume = 4,
place = {United States},
year = {Fri Nov 02 00:00:00 EDT 2018},
month = {Fri Nov 02 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 172 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Optimization principles and the figure of merit for triboelectric generators
journal, December 2017

  • Peng, Jun; Kang, Stephen Dongmin; Snyder, G. Jeffrey
  • Science Advances, Vol. 3, Issue 12
  • DOI: 10.1126/sciadv.aap8576

Charge-transport model for conducting polymers
journal, November 2016

  • Kang, Stephen Dongmin; Snyder, G. Jeffrey
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4784

Flexible thermoelectric foil for wearable energy harvesting
journal, December 2016


Organic thermoelectric materials for energy harvesting and temperature control
journal, August 2016


Printing, folding and assembly methods for forming 3D mesostructures in advanced materials
journal, March 2017


Flexible thermoelectric materials and device optimization for wearable energy harvesting
journal, January 2015

  • Bahk, Je-Hyeong; Fang, Haiyu; Yazawa, Kazuaki
  • Journal of Materials Chemistry C, Vol. 3, Issue 40
  • DOI: 10.1039/C5TC01644D

High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals
journal, September 2016

  • Varghese, Tony; Hollar, Courtney; Richardson, Joseph
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33135

The fracture strength of nitrogen doped silicon wafers
journal, January 1996


Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance. II. Mechanical properties
journal, February 2005


High-Performance Screen-Printed Thermoelectric Films on Fabrics
journal, August 2017


Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling
journal, January 2015


A wearable thermoelectric generator fabricated on a glass fabric
journal, January 2014

  • Kim, Sun Jin; We, Ju Hyung; Cho, Byung Jin
  • Energy & Environmental Science, Vol. 7, Issue 6
  • DOI: 10.1039/c4ee00242c

Paper-based origami flexible and foldable thermoelectric nanogenerator
journal, January 2017


21.1 Nanowatt circuit interface to whole-cell bacterial sensors
conference, February 2017

  • Nadeau, Phillip; Mimee, Mark; Carim, Sean
  • 2017 IEEE International Solid- State Circuits Conference - (ISSCC), 2017 IEEE International Solid-State Circuits Conference (ISSCC)
  • DOI: 10.1109/ISSCC.2017.7870406

Self-assembled three dimensional network designs for soft electronics
journal, June 2017

  • Jang, Kyung-In; Li, Kan; Chung, Ha Uk
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15894

Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties
journal, April 2016


Thermoelectric properties of anisotropy-controlled p-type Bi–Te–Sb system via bulk mechanical alloying and shear extrusion
journal, July 2004


Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films Enabled by Multidimensional Conjugated Nanomaterials
journal, January 2016

  • Cho, Chungyeon; Wallace, Kevin L.; Tzeng, Ping
  • Advanced Energy Materials, Vol. 6, Issue 7
  • DOI: 10.1002/aenm.201502168

Energy Harvesting from the Animal/Human Body for Self-Powered Electronics
journal, June 2017


Thermoelectric microdevice fabricated by a MEMS-like electrochemical process
journal, July 2003

  • Snyder, G. Jeffrey; Lim, James R.; Huang, Chen-Kuo
  • Nature Materials, Vol. 2, Issue 8
  • DOI: 10.1038/nmat943

8.2 Batteryless Sub-nW Cortex-M0+ processor with dynamic leakage-suppression logic
conference, February 2015

  • Lim, Wootaek; Lee, Inhee; Sylvester, Dennis
  • 2015 IEEE International Solid- State Circuits Conference - (ISSCC), 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers
  • DOI: 10.1109/ISSCC.2015.7062968

Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics
journal, November 2006

  • Weber, J.; Potje-Kamloth, K.; Haase, F.
  • Sensors and Actuators A: Physical, Vol. 132, Issue 1
  • DOI: 10.1016/j.sna.2006.04.054

Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials
journal, September 2016


Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)
journal, May 2011

  • Bubnova, Olga; Khan, Zia Ullah; Malti, Abdellah
  • Nature Materials, Vol. 10, Issue 6, p. 429-433
  • DOI: 10.1038/nmat3012

Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots
journal, October 2017

  • Yan, Zheng; Han, Mengdi; Shi, Yan
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 45
  • DOI: 10.1073/pnas.1713805114

Thermoelectric and transport properties of β-Ag2Se compounds
journal, July 2000

  • Ferhat, Marhoun; Nagao, Jiro
  • Journal of Applied Physics, Vol. 88, Issue 2
  • DOI: 10.1063/1.373741

Flexible Thermoelectric Generators Composed of n-and p-Type Silicon Nanowires Fabricated by Top-Down Method
journal, December 2016

  • Choi, Jinyong; Cho, Kyoungah; Kim, Sangsig
  • Advanced Energy Materials, Vol. 7, Issue 7
  • DOI: 10.1002/aenm.201602138

Scanning Seebeck Coefficient Measurement System for Homogeneity Characterization of Bulk and Thin-Film Thermoelectric Materials
journal, April 2012


Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films
journal, January 2017

  • MacLeod, Bradley A.; Stanton, Noah J.; Gould, Isaac E.
  • Energy & Environmental Science, Vol. 10, Issue 10
  • DOI: 10.1039/C7EE01130J

Organic flexible thermoelectric generators: from modeling, a roadmap towards applications
journal, January 2017

  • Beretta, D.; Perego, A.; Lanzani, G.
  • Sustainable Energy & Fuels, Vol. 1, Issue 1
  • DOI: 10.1039/C6SE00028B

Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics
journal, April 2015


Fabrication Process for Micro Thermoelectric Generators (μTEGs)
journal, October 2015


Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg 3.2 Sb 1.5 Bi 0.49 Te 0.01
journal, January 2018

  • Kanno, Tsutomu; Tamaki, Hiromasa; Sato, Hiroki K.
  • Applied Physics Letters, Vol. 112, Issue 3
  • DOI: 10.1063/1.5016488

Self-assembled three dimensional network designs for soft electronics.
journalarticle, January 2017

  • Jang, Kyung-In; Li, Kan; Chung, Ha Uk
  • Springer Science and Business Media LLC
  • DOI: 10.17863/cam.40072

Preparation and thermoelectric properties of semiconducting Zn4Sb3
journal, July 1997

  • Caillat, T.; Fleurial, J. -P.; Borshchevsky, A.
  • Journal of Physics and Chemistry of Solids, Vol. 58, Issue 7
  • DOI: 10.1016/S0022-3697(96)00228-4

High Thermoelectric zT in n-Type Silver Selenide films at Room Temperature
journal, December 2017

  • Perez-Taborda, Jaime Andres; Caballero-Calero, Olga; Vera-Londono, Liliana
  • Advanced Energy Materials, Vol. 8, Issue 8
  • DOI: 10.1002/aenm.201702024

High thermoelectric performance in (Bi 0.25 Sb 0.75 ) 2 Te 3 due to band convergence and improved by carrier concentration control
journal, October 2017


Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2
journal, April 2015

  • Wan, Chunlei; Gu, Xiaokun; Dang, Feng
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4251

Apparent critical phenomena in the superionic phase transition of Cu 2- x Se
journal, January 2016


Energy extraction from the biologic battery in the inner ear
journal, November 2012

  • Mercier, Patrick P.; Lysaght, Andrew C.; Bandyopadhyay, Saurav
  • Nature Biotechnology, Vol. 30, Issue 12
  • DOI: 10.1038/nbt.2394

Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics
journal, January 2018


Effective thermal conductivity in thermoelectric materials
journal, May 2013

  • Baranowski, Lauryn L.; Jeffrey Snyder, G.; Toberer, Eric S.
  • Journal of Applied Physics, Vol. 113, Issue 20
  • DOI: 10.1063/1.4807314

Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics
journal, September 2017


Realization of a wearable miniaturized thermoelectric generator for human body applications
journal, November 2009

  • Wang, Ziyang; Leonov, Vladimir; Fiorini, Paolo
  • Sensors and Actuators A: Physical, Vol. 156, Issue 1
  • DOI: 10.1016/j.sna.2009.02.028

Flexible n-Type High-Performance Thermoelectric Thin Films of Poly(nickel-ethylenetetrathiolate) Prepared by an Electrochemical Method
journal, March 2016


Varying the ionic functionalities of conjugated polyelectrolytes leads to both p- and n-type carbon nanotube composites for flexible thermoelectrics
journal, January 2015

  • Mai, Cheng-Kang; Russ, Boris; Fronk, Stephanie L.
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE00938C

Crystal structure and mechanical properties of spark plasma sintered Cu2Se: An efficient photovoltaic and thermoelectric material
journal, April 2015


Energy Harvesting Technologies
journal, January 2011


The fracture strength of nitrogen doped silicon wafers
journal, January 1996


Extracting energy from the inner ear
journal, December 2012

  • Shepard, Kenneth; Ito, Taku; Griffith, Andrew J.
  • Nature Biotechnology, Vol. 30, Issue 12
  • DOI: 10.1038/nbt.2448

Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2
journal, April 2015

  • Wan, Chunlei; Gu, Xiaokun; Dang, Feng
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4251

Thermoelectric microdevice fabricated by a MEMS-like electrochemical process
journal, July 2003

  • Snyder, G. Jeffrey; Lim, James R.; Huang, Chen-Kuo
  • Nature Materials, Vol. 2, Issue 8
  • DOI: 10.1038/nmat943

Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics
journal, January 2018


High-Performance Screen-Printed Thermoelectric Films on Fabrics
journal, August 2017


High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals
journal, September 2016

  • Varghese, Tony; Hollar, Courtney; Richardson, Joseph
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33135

Effective thermal conductivity in thermoelectric materials
journal, May 2013

  • Baranowski, Lauryn L.; Jeffrey Snyder, G.; Toberer, Eric S.
  • Journal of Applied Physics, Vol. 113, Issue 20
  • DOI: 10.1063/1.4807314

Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots
journal, October 2017

  • Yan, Zheng; Han, Mengdi; Shi, Yan
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 45
  • DOI: 10.1073/pnas.1713805114

A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications
journal, July 2014

  • Mercier, Patrick P.; Bandyopadhyay, Saurav; Lysaght, Andrew C.
  • IEEE Journal of Solid-State Circuits, Vol. 49, Issue 7
  • DOI: 10.1109/jssc.2014.2316237

Optimization principles and the figure of merit for triboelectric generators
journal, December 2017

  • Peng, Jun; Kang, Stephen Dongmin; Snyder, G. Jeffrey
  • Science Advances, Vol. 3, Issue 12
  • DOI: 10.1126/sciadv.aap8576

Energy Harvesting from the Animal/Human Body for Self-Powered Electronics
journal, June 2017


Self-assembled three dimensional network designs for soft electronics.
journalarticle, January 2017

  • Jang, Kyung-In; Li, Kan; Chung, Ha Uk
  • Springer Science and Business Media LLC
  • DOI: 10.17863/cam.40072

Works referencing / citing this record:

An Inverse Design Method of Buckling-Guided Assembly for Ribbon-Type 3D Structures
journal, November 2019

  • Xu, Zheng; Fan, Zhichao; Zi, Yanyang
  • Journal of Applied Mechanics, Vol. 87, Issue 3
  • DOI: 10.1115/1.4045367

Progress and Perspective: Soft Thermoelectric Materials for Wearable and Internet‐of‐Things Applications
journal, February 2019

  • Zaia, Edmond W.; Gordon, Madeleine P.; Yuan, Pengyu
  • Advanced Electronic Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aelm.201800823

Stretchable fabric generates electric power from woven thermoelectric fibers
journal, January 2020


3D Self‐Assembled Microelectronic Devices: Concepts, Materials, Applications
null, January 2020

  • Karnaushenko, Daniil; Kang, Tong; Bandari, Vineeth K.
  • Hoboke, NJ : Wiley
  • DOI: 10.34657/4443

Buckling and twisting of advanced materials into morphable 3D mesostructures
journal, June 2019

  • Zhao, Hangbo; Li, Kan; Han, Mengdi
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 27
  • DOI: 10.1073/pnas.1901193116

Mechanically flexible microfluidics for microparticle dispensing based on traveling wave dielectrophoresis
journal, January 2020

  • Sim, Kyoseung; Shi, Leilei; He, Guoliang
  • Journal of Micromechanics and Microengineering, Vol. 30, Issue 2
  • DOI: 10.1088/1361-6439/ab5ed9

Buckling and twisting of advanced materials into morphable 3D mesostructures.
text, January 2019

  • Zhao, Hangbo; Li, Kan; Han, Mengdi
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.41199

Soft eSkin: distributed touch sensing with harmonized energy and computing
journal, December 2019

  • Soni, Mahesh; Dahiya, Ravinder
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378, Issue 2164
  • DOI: 10.1098/rsta.2019.0156

Wearable thermoelectrics for personalized thermoregulation
journal, May 2019


Organic Thermoelectric Multilayers with High Stretchiness
journal, December 2019


Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics
journal, September 2019


A Bioinspired Interface Design for Improving the Strength and Electrical Conductivity of Graphene-Based Fibers
journal, February 2018


Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches
journal, June 2019


New horizons in thermoelectric materials: Correlated electrons, organic transport, machine learning, and more
journal, May 2019

  • Urban, Jeffrey J.; Menon, Akanksha K.; Tian, Zhiting
  • Journal of Applied Physics, Vol. 125, Issue 18
  • DOI: 10.1063/1.5092525

Self‐Healing and Stretchable 3D‐Printed Organic Thermoelectrics
journal, October 2019

  • Kee, Seyoung; Haque, Md Azimul; Corzo, Daniel
  • Advanced Functional Materials, Vol. 29, Issue 51
  • DOI: 10.1002/adfm.201905426

3D Self‐Assembled Microelectronic Devices: Concepts, Materials, Applications
journal, September 2019

  • Karnaushenko, Daniil; Kang, Tong; Bandari, Vineeth K.
  • Advanced Materials, Vol. 32, Issue 15
  • DOI: 10.1002/adma.201902994

2D Materials for Large‐Area Flexible Thermoelectric Devices
journal, November 2019

  • Kanahashi, Kaito; Pu, Jiang; Takenobu, Taishi
  • Advanced Energy Materials, Vol. 10, Issue 11
  • DOI: 10.1002/aenm.201902842

Meters-long, sewable, wearable conductive polymer wires for thermoelectric applications
journal, January 2020

  • Ge, Ru; Dong, Xinyun; Sun, Lulu
  • Journal of Materials Chemistry C, Vol. 8, Issue 5
  • DOI: 10.1039/c9tc06079k

A wearable helical organic–inorganic photodetector with thermoelectric generators as the power source
journal, January 2019

  • Sa, Cai; Xu, Xiaojie; Wu, Xiang
  • Journal of Materials Chemistry C, Vol. 7, Issue 42
  • DOI: 10.1039/c9tc04696h

Fiber‐Based Energy Conversion Devices for Human‐Body Energy Harvesting
journal, June 2019


Doping effect on the thermoelectric transport properties of HfTe 5
journal, December 2019

  • Hu, Junfeng; Yu, Haiming; Ansermet, Jean-Philippe
  • AIP Advances, Vol. 9, Issue 12
  • DOI: 10.1063/1.5127804

Flexible Thermoelectric Materials and Generators: Challenges and Innovations
journal, May 2019


3D Conformal Printing and Photonic Sintering of High‐Performance Flexible Thermoelectric Films Using 2D Nanoplates
journal, July 2019

  • Saeidi‐Javash, Mortaza; Kuang, Wenzheng; Dun, Chaochao
  • Advanced Functional Materials, Vol. 29, Issue 35
  • DOI: 10.1002/adfm.201901930

Intrinsic and Extrinsically Limited Thermoelectric Transport within Semiconducting Single‐Walled Carbon Nanotube Networks
journal, February 2019

  • Blackburn, Jeffrey L.; Kang, Stephen D.; Roos, Michael J.
  • Advanced Electronic Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aelm.201800910

Stretchable Skin‐Like Cooling/Heating Device for Reconstruction of Artificial Thermal Sensation in Virtual Reality
journal, February 2020

  • Lee, Jinwoo; Sul, Heayoun; Lee, Wonha
  • Advanced Functional Materials, Vol. 30, Issue 29
  • DOI: 10.1002/adfm.201909171

Remotely Triggered Assembly of 3D Mesostructures Through Shape‐Memory Effects
journal, November 2019


Strain-gated infrared photodetector based on helical graphene nanoribbon
journal, September 2019


Assembling a Natural Small Molecule into a Supramolecular Network with High Structural Order and Dynamic Functions
journal, July 2019

  • Zhang, Qi; Deng, Yuan-Xin; Luo, Hong-Xi
  • Journal of the American Chemical Society, Vol. 141, Issue 32
  • DOI: 10.1021/jacs.9b05740

Wearable thermoelectrics for personalized thermoregulation
journal, May 2019


Wireless, Skin-Mountable EMG Sensor for Human–Machine Interface Application
journal, December 2019

  • Song, Min-Su; Kang, Sung-Gu; Lee, Kyu-Tae
  • Micromachines, Vol. 10, Issue 12
  • DOI: 10.3390/mi10120879

Organic Thermoelectric Multilayers with High Stretchiness
journal, December 2019