DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kinetic simulations of fusion ignition with hot-spot ablator mix

Abstract

Inertial confinement fusion fuel suffers increased x-ray radiation losses when carbon from the capsule ablator mixes into the hot-spot. Here, we present one- and two-dimensional ion Vlasov-Fokker-Planck simulations that resolve hot-spot self-heating in the presence of a localized spike of carbon mix, totalling 1.9% of the hot-spot mass. The mix region cools and contracts over tens of picoseconds, increasing its α particle stopping power and radiative losses. Furthermore, this makes a localized mix region more severe than an equal amount of uniformly distributed mix. There is also a purely kinetic effect that reduces fusion reactivity by several percent, since faster ions in the tail of the distribution are absorbed by the mix region. Radiative cooling and contraction of the spike induces fluid motion, causing neutron spectrum broadening. This artificially increases the inferred experimental ion temperatures and gives line of sight variations.

Authors:
 [1];  [2];  [3];  [3];  [3];  [3];  [3];  [4];  [5]; ORCiD logo [2]; ORCiD logo [2];  [6]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Oxford, Oxford (United Kingdom)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Univ. of Oxford, Oxford (United Kingdom)
  4. STFC Rutherford Appleton Lab., Didcot (United Kingdom)
  5. STFC Rutherford Appleton Lab., Didcot (United Kingdom); Univ. of Strathclyde, Glasgow (United Kingdom)
  6. Univ. of Oxford, Oxford (United Kingdom); STFC Rutherford Appleton Lab., Didcot (United Kingdom)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
Universities/Institutions; USDOE
OSTI Identifier:
1565910
Alternate Identifier(s):
OSTI ID: 1560768
Report Number(s):
LA-UR-19-25923
Journal ID: ISSN 2470-0045; PLEEE8; TRN: US2000944
Grant/Contract Number:  
89233218CNA000001; 20180040DR
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 100; Journal Issue: 3; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Inertial Fusion

Citation Formats

Sadler, James D., Lu, Yingchao, Spiers, Benjamin, Mayr, Marko W., Savin, Alex, Wang, Robin H. W., Aboushelbaya, Ramy, Glize, Kevin, Bingham, Robert, Li, Hui, Flippo, Kirk A., and Norreys, Peter A. Kinetic simulations of fusion ignition with hot-spot ablator mix. United States: N. p., 2019. Web. doi:10.1103/PhysRevE.100.033206.
Sadler, James D., Lu, Yingchao, Spiers, Benjamin, Mayr, Marko W., Savin, Alex, Wang, Robin H. W., Aboushelbaya, Ramy, Glize, Kevin, Bingham, Robert, Li, Hui, Flippo, Kirk A., & Norreys, Peter A. Kinetic simulations of fusion ignition with hot-spot ablator mix. United States. https://doi.org/10.1103/PhysRevE.100.033206
Sadler, James D., Lu, Yingchao, Spiers, Benjamin, Mayr, Marko W., Savin, Alex, Wang, Robin H. W., Aboushelbaya, Ramy, Glize, Kevin, Bingham, Robert, Li, Hui, Flippo, Kirk A., and Norreys, Peter A. Mon . "Kinetic simulations of fusion ignition with hot-spot ablator mix". United States. https://doi.org/10.1103/PhysRevE.100.033206. https://www.osti.gov/servlets/purl/1565910.
@article{osti_1565910,
title = {Kinetic simulations of fusion ignition with hot-spot ablator mix},
author = {Sadler, James D. and Lu, Yingchao and Spiers, Benjamin and Mayr, Marko W. and Savin, Alex and Wang, Robin H. W. and Aboushelbaya, Ramy and Glize, Kevin and Bingham, Robert and Li, Hui and Flippo, Kirk A. and Norreys, Peter A.},
abstractNote = {Inertial confinement fusion fuel suffers increased x-ray radiation losses when carbon from the capsule ablator mixes into the hot-spot. Here, we present one- and two-dimensional ion Vlasov-Fokker-Planck simulations that resolve hot-spot self-heating in the presence of a localized spike of carbon mix, totalling 1.9% of the hot-spot mass. The mix region cools and contracts over tens of picoseconds, increasing its α particle stopping power and radiative losses. Furthermore, this makes a localized mix region more severe than an equal amount of uniformly distributed mix. There is also a purely kinetic effect that reduces fusion reactivity by several percent, since faster ions in the tail of the distribution are absorbed by the mix region. Radiative cooling and contraction of the spike induces fluid motion, causing neutron spectrum broadening. This artificially increases the inferred experimental ion temperatures and gives line of sight variations.},
doi = {10.1103/PhysRevE.100.033206},
journal = {Physical Review E},
number = 3,
volume = 100,
place = {United States},
year = {Mon Sep 09 00:00:00 EDT 2019},
month = {Mon Sep 09 00:00:00 EDT 2019}
}

Journal Article:

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Vlasov–Fokker–Planck code for high energy density physics
journal, July 2011

  • Tzoufras, M.; Bell, A. R.; Norreys, P. A.
  • Journal of Computational Physics, Vol. 230, Issue 17
  • DOI: 10.1016/j.jcp.2011.04.034

Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets
journal, July 2013


An electron conductivity model for dense plasmas
journal, January 1984

  • Lee, Y. T.; More, R. M.
  • Physics of Fluids, Vol. 27, Issue 5
  • DOI: 10.1063/1.864744

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
journal, June 2018


First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions
journal, April 2014


Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions
journal, August 2013


The Physics of Inertial Fusion
book, January 2004


Effects of nonequilibrium particle distributions in deuterium-tritium burning
journal, January 2010

  • Michta, David; Graziani, Frank; Luu, Thomas
  • Physics of Plasmas, Vol. 17, Issue 1
  • DOI: 10.1063/1.3276103

Elecron Energy Transport in Steep Temperature Gradients in Laser-Produced Plasmas
journal, January 1981


Fokker-Planck Equation for an Inverse-Square Force
journal, July 1957

  • Rosenbluth, Marshall N.; MacDonald, William M.; Judd, David L.
  • Physical Review, Vol. 107, Issue 1
  • DOI: 10.1103/PhysRev.107.1

Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions
journal, May 2014

  • Rinderknecht, H. G.; Sio, H.; Li, C. K.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876615

Observation of Nonlocal Heat Flux Using Thomson Scattering
journal, September 2018


Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
journal, June 2015


Fokker–Planck kinetic modeling of suprathermal α -particles in a fusion plasma
journal, December 2014


Diagnosing and controlling mix in National Ignition Facility implosion experiments
journal, May 2011

  • Hammel, B. A.; Scott, H. A.; Regan, S. P.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3567520

The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra
journal, July 2014


The persistence of Maxwellian D and T distributions during burn in inertial confinement fusion
journal, June 2009


Improved formulas for fusion cross-sections and thermal reactivities
journal, April 1992


Species separation and modification of neutron diagnostics in inertial-confinement fusion
journal, September 2014


Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating
journal, May 2018

  • Taitano, W. T.; Simakov, A. N.; Chacón, L.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5024402

A review of Vlasov–Fokker–Planck numerical modeling of inertial confinement fusion plasma
journal, February 2012

  • Thomas, A. G. R.; Tzoufras, M.; Robinson, A. P. L.
  • Journal of Computational Physics, Vol. 231, Issue 3
  • DOI: 10.1016/j.jcp.2011.09.028

Knudsen Layer Reduction of Fusion Reactivity
journal, August 2012


Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion
journal, March 2015

  • Weber, C. R.; Clark, D. S.; Cook, A. W.
  • Physics of Plasmas, Vol. 22, Issue 3
  • DOI: 10.1063/1.4914157

Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility
journal, August 2016


Fully Kinetic Fokker-Planck Model of Thermal Smoothing in Nonuniform Laser-Target Interactions
journal, July 2009


Revised Knudsen-layer reduction of fusion reactivity
journal, December 2013

  • Albright, B. J.; Molvig, Kim; Huang, C. -K.
  • Physics of Plasmas, Vol. 20, Issue 12
  • DOI: 10.1063/1.4833639

Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

Measurements of an Ablator-Gas Atomic Mix in Indirectly Driven Implosions at the National Ignition Facility
journal, January 2014


Ion Fokker-Planck simulation of D- 3 He gas target implosions
journal, December 2012


Nuclear yield reduction in inertial confinement fusion exploding-pusher targets explained by fuel-pusher mixing through hybrid kinetic-fluid modeling
journal, September 2018


One-dimensional particle simulations of Knudsen-layer effects on D-T fusion
journal, December 2014

  • Cohen, Bruce I.; Dimits, Andris M.; Zimmerman, George B.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4903323

Indirect drive ignition at the National Ignition Facility
journal, October 2016


Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, April 2015


A practical difference scheme for Fokker-Planck equations
journal, August 1970


Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions
journal, May 2018

  • Woo, K. M.; Betti, R.; Shvarts, D.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5026706

The role of hot spot mix in the low-foot and high-foot implosions on the NIF
journal, May 2017

  • Ma, T.; Patel, P. K.; Izumi, N.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983625

Self-Similar Structure and Experimental Signatures of Suprathermal Ion Distribution in Inertial Confinement Fusion Implosions
journal, September 2015


Fusion neutron energies and spectra
journal, July 1973


Improved formulas for fusion cross-sections and thermal reactivities
journal, December 1993


Species separation and modification of neutron diagnostics in inertial-confinement fusion
text, January 2014


Works referencing / citing this record:

Observation of persistent species temperature separation in inertial confinement fusion mixtures
journal, January 2020