DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context

Abstract

We present the DEC-RIMP2-F12 method where we have augmented the Divide Expand-Consolidate resolution-of-the-identity second-order Møller-Plesset perturbation theory method (DEC-RIMP2) [P. Baudin et al., J. Chem. Phys. 144, 054102 (2016)] with an explicitly correlated (F12) correction. Here, the new method is linear-scaling, massively parallel, and it corrects for the basis set incompleteness error in an efficient manner. In addition, we observe that the F12 contribution decreases the domain error of the DEC-RIMP2 correlation energy by roughly an order of magnitude. An important feature of the DEC scheme is the inherent error control defined by a single parameter, and this feature is also retained for the DEC-RIMP2-F12 method. In this paper we present the working equations for the DEC-RIMP2-F12 method and proof of concept numerical results for a set of test molecules.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [4];  [1];  [1]
  1. Aarhus Univ., Aarhus C (Denmark)
  2. Ruhr-Univ. Bochum, Bochum (Germany)
  3. Univ. of Oslo, Blindern (Norway)
  4. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1565476
Alternate Identifier(s):
OSTI ID: 1254523
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 144; Journal Issue: 20; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Physics

Citation Formats

Wang, Yang Min, Hättig, Christof, Reine, Simen, Valeev, Edward, Kjærgaard, Thomas, and Kristensen, Kasper. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. United States: N. p., 2016. Web. doi:10.1063/1.4951696.
Wang, Yang Min, Hättig, Christof, Reine, Simen, Valeev, Edward, Kjærgaard, Thomas, & Kristensen, Kasper. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. United States. https://doi.org/10.1063/1.4951696
Wang, Yang Min, Hättig, Christof, Reine, Simen, Valeev, Edward, Kjærgaard, Thomas, and Kristensen, Kasper. Thu . "Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context". United States. https://doi.org/10.1063/1.4951696. https://www.osti.gov/servlets/purl/1565476.
@article{osti_1565476,
title = {Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context},
author = {Wang, Yang Min and Hättig, Christof and Reine, Simen and Valeev, Edward and Kjærgaard, Thomas and Kristensen, Kasper},
abstractNote = {We present the DEC-RIMP2-F12 method where we have augmented the Divide Expand-Consolidate resolution-of-the-identity second-order Møller-Plesset perturbation theory method (DEC-RIMP2) [P. Baudin et al., J. Chem. Phys. 144, 054102 (2016)] with an explicitly correlated (F12) correction. Here, the new method is linear-scaling, massively parallel, and it corrects for the basis set incompleteness error in an efficient manner. In addition, we observe that the F12 contribution decreases the domain error of the DEC-RIMP2 correlation energy by roughly an order of magnitude. An important feature of the DEC scheme is the inherent error control defined by a single parameter, and this feature is also retained for the DEC-RIMP2-F12 method. In this paper we present the working equations for the DEC-RIMP2-F12 method and proof of concept numerical results for a set of test molecules.},
doi = {10.1063/1.4951696},
journal = {Journal of Chemical Physics},
number = 20,
volume = 144,
place = {United States},
year = {Thu May 26 00:00:00 EDT 2016},
month = {Thu May 26 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method
journal, March 2009

  • Neese, Frank; Wennmohs, Frank; Hansen, Andreas
  • The Journal of Chemical Physics, Vol. 130, Issue 11
  • DOI: 10.1063/1.3086717

Accuracy of the three-body fragment molecular orbital method applied to Møller-Plesset perturbation theory: Application of FMO to Møller-Plesset Perturbation Theory
journal, March 2007

  • Fedorov, Dmitri G.; Ishimura, Kazuya; Ishida, Toyokazu
  • Journal of Computational Chemistry, Vol. 28, Issue 9
  • DOI: 10.1002/jcc.20645

Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple
journal, August 2014

  • Pavošević, Fabijan; Neese, Frank; Valeev, Edward F.
  • The Journal of Chemical Physics, Vol. 141, Issue 5
  • DOI: 10.1063/1.4890002

Atomic Bethe-Goldstone Equations. I. The Be Atom
journal, March 1967


Low-order scaling local electron correlation methods. I. Linear scaling local MP2
journal, October 1999

  • Schütz, Martin; Hetzer, Georg; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 111, Issue 13
  • DOI: 10.1063/1.479957

The divide–expand–consolidate MP2 scheme goes massively parallel
journal, April 2013


Molecular Electronic-Structure Theory
book, August 2000


New correlation factors for explicitly correlated electronic wave functions
journal, August 2005

  • Tew, David P.; Klopper, Wim
  • The Journal of Chemical Physics, Vol. 123, Issue 7
  • DOI: 10.1063/1.1999632

Alternative formulation of the matrix elements in MP2-R12 theory
journal, January 2005

  • Kedžuch, Stanislav; Milko, Matúš; Noga, Jozef
  • International Journal of Quantum Chemistry, Vol. 105, Issue 6
  • DOI: 10.1002/qua.20744

Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets
journal, April 2002

  • Klopper, Wim; Samson, Claire C. M.
  • The Journal of Chemical Physics, Vol. 116, Issue 15
  • DOI: 10.1063/1.1461814

Many – Body Methods in Chemistry and Physics
book, January 2009


What is the most efficient way to reach the canonical MP2 basis set limit?
journal, September 2013


MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme
journal, January 2012

  • Kristensen, Kasper; Høyvik, Ida-Marie; Jansik, Branislav
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 45
  • DOI: 10.1039/c2cp41958k

Orbital spaces in the divide-expand-consolidate coupled cluster method
journal, April 2016

  • Ettenhuber, Patrick; Baudin, Pablo; Kjærgaard, Thomas
  • The Journal of Chemical Physics, Vol. 144, Issue 16
  • DOI: 10.1063/1.4947019

General orbital invariant MP2-F12 theory
journal, April 2007

  • Werner, Hans-Joachim; Adler, Thomas B.; Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 126, Issue 16
  • DOI: 10.1063/1.2712434

A scaling PNO–MP2 method using a hybrid OSV–PNO approach with an iterative direct generation of OSVs
journal, September 2013


Linear-scaling implementation of the direct random-phase approximation
journal, May 2015

  • Kállay, Mihály
  • The Journal of Chemical Physics, Vol. 142, Issue 20
  • DOI: 10.1063/1.4921542

The Dalton quantum chemistry program system: The Dalton program
journal, September 2013

  • Aidas, Kestutis; Angeli, Celestino; Bak, Keld L.
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 3
  • DOI: 10.1002/wcms.1172

Periodic local MP2 method employing orbital specific virtuals
journal, September 2015

  • Usvyat, Denis; Maschio, Lorenzo; Schütz, Martin
  • The Journal of Chemical Physics, Vol. 143, Issue 10
  • DOI: 10.1063/1.4921301

Explicitly Correlated Electrons in Molecules
journal, December 2011

  • Hättig, Christof; Klopper, Wim; Köhn, Andreas
  • Chemical Reviews, Vol. 112, Issue 1
  • DOI: 10.1021/cr200168z

Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme
journal, September 2012

  • Kristensen, Kasper; Jørgensen, Poul; Jansík, Branislav
  • The Journal of Chemical Physics, Vol. 137, Issue 11
  • DOI: 10.1063/1.4752432

Configuration‐Interaction Calculation of H 3 and H 2
journal, February 1965

  • Edmiston, C.; Krauss, M.
  • The Journal of Chemical Physics, Vol. 42, Issue 3
  • DOI: 10.1063/1.1696050

Trust Region Minimization of Orbital Localization Functions
journal, August 2012

  • Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 9
  • DOI: 10.1021/ct300473g

Initiation of explicitly correlated Slater-type geminal theory
journal, November 2004


Tensor factorizations of local second-order Møller–Plesset theory
journal, January 2011

  • Yang, Jun; Kurashige, Yuki; Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 134, Issue 4
  • DOI: 10.1063/1.3528935

Large-Scale MP2 Calculations on the Blue Gene Architecture Using the Fragment Molecular Orbital Method
journal, December 2011

  • Fletcher, Graham D.; Fedorov, Dmitri G.; Pruitt, Spencer R.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 1
  • DOI: 10.1021/ct200548v

Accurate quantum‐chemical calculations: The use of Gaussian‐type geminal functions in the treatment of electron correlation
journal, October 1996

  • Persson, B. Joakim; Taylor, Peter R.
  • The Journal of Chemical Physics, Vol. 105, Issue 14
  • DOI: 10.1063/1.472432

The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development
journal, October 1997

  • Kendall, Rick A.; Früchtl, Herbert A.
  • Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), Vol. 97, Issue 1-4
  • DOI: 10.1007/s002140050249

Linear scaling local correlation approach for solving the coupled cluster equations of large systems
journal, December 2001

  • Li, Shuhua; Ma, Jing; Jiang, Yuansheng
  • Journal of Computational Chemistry, Vol. 23, Issue 2
  • DOI: 10.1002/jcc.10003

Linear scaling coupled cluster method with correlation energy based error control
journal, July 2010

  • Ziółkowski, Marcin; Jansík, Branislav; Kjærgaard, Thomas
  • The Journal of Chemical Physics, Vol. 133, Issue 1
  • DOI: 10.1063/1.3456535

Cluster-in-molecule local correlation method for large systems
journal, November 2013


Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide–expand–consolidate RI-MP2 model
journal, February 2016

  • Baudin, Pablo; Ettenhuber, Patrick; Reine, Simen
  • The Journal of Chemical Physics, Vol. 144, Issue 5
  • DOI: 10.1063/1.4940732

Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory
journal, February 1991

  • Kutzelnigg, Werner; Klopper, Wim
  • The Journal of Chemical Physics, Vol. 94, Issue 3
  • DOI: 10.1063/1.459921

Explicitly correlated second-order perturbation theory using density fitting and local approximations
journal, February 2006

  • Werner, Hans-Joachim; Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 124, Issue 5
  • DOI: 10.1063/1.2150817

Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
journal, February 2002

  • Weigend, Florian; Köhn, Andreas; Hättig, Christof
  • The Journal of Chemical Physics, Vol. 116, Issue 8
  • DOI: 10.1063/1.1445115

Fully automated implementation of the incremental scheme: Application to CCSD energies for hydrocarbons and transition metal compounds
journal, April 2007

  • Friedrich, Joachim; Hanrath, Michael; Dolg, Michael
  • The Journal of Chemical Physics, Vol. 126, Issue 15
  • DOI: 10.1063/1.2721538

Rates of convergence of the partial‐wave expansions of atomic correlation energies
journal, March 1992

  • Kutzelnigg, Werner; Morgan, John D.
  • The Journal of Chemical Physics, Vol. 96, Issue 6
  • DOI: 10.1063/1.462811

Incremental CCSD(T)(F12*)|MP2: A Black Box Method To Obtain Highly Accurate Reaction Energies
journal, November 2013

  • Friedrich, Joachim; Hänchen, Julia
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 12
  • DOI: 10.1021/ct4008074

Improving on the resolution of the identity in linear R12 ab initio theories
journal, September 2004


On the accuracy of explicitly correlated coupled-cluster interaction energies — have orbital results been beaten yet?
journal, July 2012

  • Patkowski, Konrad
  • The Journal of Chemical Physics, Vol. 137, Issue 3
  • DOI: 10.1063/1.4734597

Local explicitly correlated second-order Møller–Plesset perturbation theory with pair natural orbitals
journal, August 2011

  • Tew, David P.; Helmich, Benjamin; Hättig, Christof
  • The Journal of Chemical Physics, Vol. 135, Issue 7
  • DOI: 10.1063/1.3624370

Local explicitly correlated coupled-cluster methods: Efficient removal of the basis set incompleteness and domain errors
journal, June 2009

  • Adler, Thomas B.; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 130, Issue 24
  • DOI: 10.1063/1.3160675

Explicitly Correlated R12/F12 Methods for Electronic Structure
journal, December 2011

  • Kong, Liguo; Bischoff, Florian A.; Valeev, Edward F.
  • Chemical Reviews, Vol. 112, Issue 1
  • DOI: 10.1021/cr200204r

On the eigenfunctions of many-particle systems in quantum mechanics
journal, January 1957


Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis
journal, January 2009

  • Neese, Frank; Hansen, Andreas; Liakos, Dimitrios G.
  • The Journal of Chemical Physics, Vol. 131, Issue 6
  • DOI: 10.1063/1.3173827

Local Hartree-Fock orbitals using a three-level optimization strategy for the energy
journal, March 2013

  • Høyvik, Ida-Marie; Jansik, Branislav; Kristensen, Kasper
  • Journal of Computational Chemistry, Vol. 34, Issue 15
  • DOI: 10.1002/jcc.23256

Localizability of dynamic electron correlation
journal, September 1983


Scalable Electron Correlation Methods I.: PNO-LMP2 with Linear Scaling in the Molecular Size and Near-Inverse-Linear Scaling in the Number of Processors
journal, January 2015

  • Werner, Hans-Joachim; Knizia, Gerald; Krause, Christine
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 2
  • DOI: 10.1021/ct500725e

Robust and variational fitting
journal, January 2000

  • Dunlap, Brett I.
  • Physical Chemistry Chemical Physics, Vol. 2, Issue 10
  • DOI: 10.1039/b000027m

Explicitly correlated second order perturbation theory: Introduction of a rational generator and numerical quadratures
journal, January 2004

  • Ten-no, Seiichiro
  • The Journal of Chemical Physics, Vol. 121, Issue 1
  • DOI: 10.1063/1.1757439

Explicitly correlated electronic structure theory from R12/F12 ansätze: Explicitly correlated electronic structure theory
journal, May 2011

  • Ten-no, Seiichiro; Noga, Jozef
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 1
  • DOI: 10.1002/wcms.68

Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules
journal, February 2009

  • Adler, Thomas B.; Werner, Hans-Joachim; Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 130, Issue 5
  • DOI: 10.1063/1.3040174

Correlation consistent basis sets for explicitly correlated wavefunctions: valence and core–valence basis sets for Li, Be, Na, and Mg
journal, January 2010

  • Hill, J. Grant; Peterson, Kirk A.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 35
  • DOI: 10.1039/c0cp00020e

The MP2-F12 method in the TURBOMOLE program package
journal, May 2011

  • Bachorz, Rafał A.; Bischoff, Florian A.; Glöß, Andreas
  • Journal of Computational Chemistry, Vol. 32, Issue 11
  • DOI: 10.1002/jcc.21825

Eliminating the domain error in local explicitly correlated second-order Møller–Plesset perturbation theory
journal, September 2008

  • Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 129, Issue 10
  • DOI: 10.1063/1.2982419

r 12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l
journal, December 1985


Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar
journal, February 2008

  • Peterson, Kirk A.; Adler, Thomas B.; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 128, Issue 8
  • DOI: 10.1063/1.2831537

Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide–Expand–Consolidate CCSD(T) Model
journal, June 2015

  • Eriksen, Janus J.; Baudin, Pablo; Ettenhuber, Patrick
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 7
  • DOI: 10.1021/acs.jctc.5b00086

Automated incremental scheme for explicitly correlated methods
journal, April 2010

  • Friedrich, Joachim; Tew, David P.; Klopper, Wim
  • The Journal of Chemical Physics, Vol. 132, Issue 16
  • DOI: 10.1063/1.3394017

Low-order scaling local correlation methods II: Splitting the Coulomb operator in linear scaling local second-order Møller–Plesset perturbation theory
journal, December 2000

  • Hetzer, Georg; Schütz, Martin; Stoll, Hermann
  • The Journal of Chemical Physics, Vol. 113, Issue 21
  • DOI: 10.1063/1.1321295

Local orbitals by minimizing powers of the orbital variance
journal, May 2011

  • Jansík, Branislav; Høst, Stinne; Kristensen, Kasper
  • The Journal of Chemical Physics, Vol. 134, Issue 19
  • DOI: 10.1063/1.3590361

A Locality Analysis of the Divide–Expand–Consolidate Coupled Cluster Amplitude Equations
journal, May 2011

  • Kristensen, Kasper; Ziółkowski, Marcin; Jansík, Branislav
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 6
  • DOI: 10.1021/ct200114k

Density fitting in second-order linear-r12 Møller–Plesset perturbation theory
journal, September 2003

  • Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 119, Issue 9
  • DOI: 10.1063/1.1594713

Local Treatment of Electron Correlation
journal, October 1993


Local treatment of electron correlation in coupled cluster theory
journal, April 1996

  • Hampel, Claudia; Werner, Hans‐Joachim
  • The Journal of Chemical Physics, Vol. 104, Issue 16
  • DOI: 10.1063/1.471289

The divide-expand-consolidate family of coupled cluster methods: Numerical illustrations using second order Møller-Plesset perturbation theory
journal, January 2012

  • Høyvik, Ida-Marie; Kristensen, Kasper; Jansik, Branislav
  • The Journal of Chemical Physics, Vol. 136, Issue 1
  • DOI: 10.1063/1.3667266

Scalable Electron Correlation Methods. 2. Parallel PNO-LMP2-F12 with Near Linear Scaling in the Molecular Size
journal, October 2015

  • Ma, Qianli; Werner, Hans-Joachim
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 11
  • DOI: 10.1021/acs.jctc.5b00843

Towards an incremental expansion of strong correlation effects in solids
journal, June 1996


Explicitly correlated atomic orbital basis second order Møller–Plesset theory
journal, February 2013

  • Hollman, David S.; Wilke, Jeremiah J.; Schaefer, Henry F.
  • The Journal of Chemical Physics, Vol. 138, Issue 6
  • DOI: 10.1063/1.4790582

Works referencing / citing this record:

Basis set convergence of the binding energies of strongly hydrogen-bonded atmospheric clusters
journal, January 2017

  • Elm, Jonas; Kristensen, Kasper
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 2
  • DOI: 10.1039/c6cp06851k

Perspective: Explicitly correlated electronic structure theory for complex systems
journal, February 2017

  • Grüneis, Andreas; Hirata, So; Ohnishi, Yu-ya
  • The Journal of Chemical Physics, Vol. 146, Issue 8
  • DOI: 10.1063/1.4976974

Explicitly correlated local coupled-cluster methods using pair natural orbitals
journal, July 2018

  • Ma, Qianli; Werner, Hans-Joachim
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 8, Issue 6
  • DOI: 10.1002/wcms.1371