DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities

Abstract

Gyrokinetic simulations of electrostatic driftwave instabilities in a tokamak edge have been carried out to study the turbulent transport in the pedestal of an H-mode plasma. The simulations use annulus geometry and focus on two radial regions of a DIII-D experiment: the pedestal top with a mild pressure gradient and the middle of the pedestal with a steep pressure gradient. A reactive trapped electron instability with a typical ballooning mode structure is excited by trapped electrons in the pedestal top. In the middle of the pedestal, the electrostatic instability exhibits an unusual mode structure, which peaks at the poloidal angle $θ=±π/2$. The simulations find that this unusual mode structure is due to the steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Finally, realistic DIII-D geometry appears to have a stabilizing effect on the instability when compared to a simple circular tokamak geometry.

Authors:
 [1];  [2];  [1];  [3]
  1. Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy
  2. Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Peking Univ., Beijing (China). Fusion Simulation Center
  3. Zhejiang Univ., Hangzhou (China). Inst. of Fusion Theory and Simulation
Publication Date:
Research Org.:
Univ. of California, Irvine, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1565174
Grant/Contract Number:  
AC02-05CH11231; AC05-00OR22725; FG02-07ER54916; SC0010416
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 21; Journal Issue: 4; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; physics

Citation Formats

Fulton, D. P., Lin, Z., Holod, I., and Xiao, Y. Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities. United States: N. p., 2014. Web. doi:10.1063/1.4871387.
Fulton, D. P., Lin, Z., Holod, I., & Xiao, Y. Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities. United States. https://doi.org/10.1063/1.4871387
Fulton, D. P., Lin, Z., Holod, I., and Xiao, Y. Tue . "Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities". United States. https://doi.org/10.1063/1.4871387. https://www.osti.gov/servlets/purl/1565174.
@article{osti_1565174,
title = {Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities},
author = {Fulton, D. P. and Lin, Z. and Holod, I. and Xiao, Y.},
abstractNote = {Gyrokinetic simulations of electrostatic driftwave instabilities in a tokamak edge have been carried out to study the turbulent transport in the pedestal of an H-mode plasma. The simulations use annulus geometry and focus on two radial regions of a DIII-D experiment: the pedestal top with a mild pressure gradient and the middle of the pedestal with a steep pressure gradient. A reactive trapped electron instability with a typical ballooning mode structure is excited by trapped electrons in the pedestal top. In the middle of the pedestal, the electrostatic instability exhibits an unusual mode structure, which peaks at the poloidal angle $θ=±π/2$. The simulations find that this unusual mode structure is due to the steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Finally, realistic DIII-D geometry appears to have a stabilizing effect on the instability when compared to a simple circular tokamak geometry.},
doi = {10.1063/1.4871387},
journal = {Physics of Plasmas},
number = 4,
volume = 21,
place = {United States},
year = {Tue Apr 15 00:00:00 EDT 2014},
month = {Tue Apr 15 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Improved understanding of physics processes in pedestal structure, leading to improved predictive capability for ITER
journal, August 2013


Transport of Energetic Particles by Microturbulence in Magnetized Plasmas
journal, August 2008


Global gyrokinetic particle simulations with kinetic electrons
journal, November 2007


Equilibrium analysis of current profiles in tokamaks
journal, June 1990


A first-principles predictive model of the pedestal height and width: development, testing and ITER optimization with the EPED model
journal, August 2011


Edge localized modes (ELMs)
journal, February 1996


ELM pace making and mitigation by pellet injection in ASDEX Upgrade
journal, April 2004


Ballooning theory of the second kind—two dimensional tokamak modes
journal, July 2012

  • Xie, T.; Zhang, Y. Z.; Mahajan, S. M.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4731724

Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry
journal, December 2009

  • Holod, I.; Zhang, W. L.; Xiao, Y.
  • Physics of Plasmas, Vol. 16, Issue 12
  • DOI: 10.1063/1.3273070

Gyrokinetic simulation of turbulence driven geodesic acoustic modes in edge plasmas of HL-2A tokamak
journal, November 2010

  • Liu, Feng; Lin, Z.; Dong, J. Q.
  • Physics of Plasmas, Vol. 17, Issue 11
  • DOI: 10.1063/1.3496981

Pedestal stability comparison and ITER pedestal prediction
journal, July 2009


Transport Control by Coherent Zonal Flows in the Core/Edge Transitional Regime
journal, February 2001


Gyrokinetic equations for strong-gradient regions
journal, February 2012


Linear gyrokinetic analysis of a DIII-D H-mode pedestal near the ideal ballooning threshold
journal, September 2012


Shear velocity stabilization of reactive trapped electron modes
journal, November 2002

  • Davydova, T. A.; Weiland, J.; Yakimenko, A. I.
  • Physics of Plasmas, Vol. 9, Issue 11
  • DOI: 10.1063/1.1512283

Progress towards a predictive model for pedestal height in DIII-D
journal, July 2009


Gyrokinetic approach in particle simulation
journal, January 1983


Existence of ion temperature gradient driven shear Alfvén instabilities in tokamaks
journal, May 1999

  • Zonca, Fulvio; Chen, Liu; Dong, J. Q.
  • Physics of Plasmas, Vol. 6, Issue 5
  • DOI: 10.1063/1.873449

Magnetohydrodynamic stability of tokamak edge plasmas
journal, July 1998

  • Connor, J. W.; Hastie, R. J.; Wilson, H. R.
  • Physics of Plasmas, Vol. 5, Issue 7
  • DOI: 10.1063/1.872956

Transition dynamics and confinement scaling in COMPASS-D H mode plasmas
journal, July 2001


Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes
journal, May 2002

  • Snyder, P. B.; Wilson, H. R.; Ferron, J. R.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1449463

Turbulent Transport of Trapped-Electron Modes in Collisionless Plasmas
journal, August 2009


Foundations of nonlinear gyrokinetic theory
journal, April 2007


Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport
journal, December 2012


Shear damping of drift waves in toroidal plasmas
journal, March 1993


Turbulent Transport Reduction by Zonal Flows: Massively Parallel Simulations
journal, September 1998


Global gyrokinetic simulations of the H-mode tokamak edge pedestal
journal, May 2013

  • Wan, Weigang; Parker, Scott E.; Chen, Yang
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803890

Drift waves and transport
journal, April 1999


Numerical studies of edge localized instabilities in tokamaks
journal, April 2002

  • Wilson, H. R.; Snyder, P. B.; Huysmans, G. T. A.
  • Physics of Plasmas, Vol. 9, Issue 4
  • DOI: 10.1063/1.1459058

Wave-Particle Decorrelation and Transport of Anisotropic Turbulence in Collisionless Plasmas
journal, December 2007


Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas
journal, May 2006

  • Evans, Todd E.; Moyer, Richard A.; Burrell, Keith H.
  • Nature Physics, Vol. 2, Issue 6
  • DOI: 10.1038/nphys312

Edge-localized modes - physics and theory
journal, May 1998


Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER
journal, August 2003


Noncircular, finite aspect ratio, local equilibrium model
journal, April 1998

  • Miller, R. L.; Chu, M. S.; Greene, J. M.
  • Physics of Plasmas, Vol. 5, Issue 4
  • DOI: 10.1063/1.872666

Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code
journal, March 2010

  • Burke, B. J.; Kruger, S. E.; Hegna, C. C.
  • Physics of Plasmas, Vol. 17, Issue 3
  • DOI: 10.1063/1.3309732

Nonlinear Frequency Oscillation of Alfvén Eigenmodes in Fusion Plasmas
journal, July 2012


Radial Localization of Toroidicity-Induced Alfvén Eigenmodes
journal, October 2013


Comment on “Electrostatic and Magnetic Transport of Energetic Ions in Turbulent Plasmas”
journal, November 2011


Works referencing / citing this record:

Impact of relative phase shift on inward turbulent spreading
journal, January 2015

  • Ma, C. H.; Xu, X. Q.; Xi, P. W.
  • Physics of Plasmas, Vol. 22, Issue 1
  • DOI: 10.1063/1.4905644

Impact of inward turbulence spreading on energy loss of edge-localized modesa)
journal, May 2015

  • Ma, C. H.; Xu, X. Q.; Xi, P. W.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920963

Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry
journal, June 2016

  • Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.
  • Physics of Plasmas, Vol. 23, Issue 6
  • DOI: 10.1063/1.4954911

The Reynolds stress induced by weakly up-down asymmetric ion temperature gradient mode
journal, October 2016

  • Xie, T.; Zhang, Y. Z.; Mahajan, S. M.
  • Physics of Plasmas, Vol. 23, Issue 10
  • DOI: 10.1063/1.4966241

Experimental observation of coexisting electromagnetic fluctuations correlating with the inter-ELM pedestal evolution on EAST
journal, December 2019

  • Lan, H.; Chen, R.; Xu, G. S.
  • Physics of Plasmas, Vol. 26, Issue 12
  • DOI: 10.1063/1.5123734

Gyrokinetic study of ASDEX Upgrade inter-ELM pedestal profile evolution
journal, May 2015


Microtearing turbulence limiting the JET-ILW pedestal
journal, August 2016


Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation
journal, August 2017

  • Churchill, R. M.; Chang, C. S.; Ku, S.
  • Plasma Physics and Controlled Fusion, Vol. 59, Issue 10
  • DOI: 10.1088/1361-6587/aa7c03

On microinstabilities and turbulence in steep-gradient regions of fusion devices
journal, February 2019

  • Pueschel, M. J.; Hatch, D. R.; Ernst, D. R.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 3
  • DOI: 10.1088/1361-6587/aaf8c1

A gyrokinetic perspective on the JET-ILW pedestal
journal, January 2017


Multiple ion temperature gradient driven modes in transport barriers
journal, March 2017


Effects of RMP-induced changes of radial electric fields on microturbulence in DIII-D pedestal top
journal, February 2019


Impurity effects on ion temperature gradient driven multiple modes in transport barriers
journal, May 2019