DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Alfvén wave collisions, the fundamental building block of plasma turbulence. II. Numerical solution

Abstract

Here, this paper presents the numerical verification of an asymptotic analytical solution for the nonlinear interaction between counterpropagating Alfvén waves, the fundamental building block of astrophysical plasma turbulence. The analytical solution, derived in the weak turbulence limit using the equations of incompressible MHD, is compared to a nonlinear gyrokinetic simulation of an Alfvén wave collision. Finally, the agreement between these methods signifies that the incompressible solution satisfactorily describes the essential dynamics of the nonlinear energy transfer, even under the weakly collisional plasma conditions relevant to many astrophysical environments.

Authors:
 [1];  [1];  [2]
  1. Univ. of Iowa, Iowa City, IA (United States)
  2. Univ. of Maryland, College Park, MD (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1565008
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 20; Journal Issue: 7; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Nielson, K. D., Howes, G. G., and Dorland, W. Alfvén wave collisions, the fundamental building block of plasma turbulence. II. Numerical solution. United States: N. p., 2013. Web. doi:10.1063/1.4812807.
Nielson, K. D., Howes, G. G., & Dorland, W. Alfvén wave collisions, the fundamental building block of plasma turbulence. II. Numerical solution. United States. https://doi.org/10.1063/1.4812807
Nielson, K. D., Howes, G. G., and Dorland, W. Mon . "Alfvén wave collisions, the fundamental building block of plasma turbulence. II. Numerical solution". United States. https://doi.org/10.1063/1.4812807. https://www.osti.gov/servlets/purl/1565008.
@article{osti_1565008,
title = {Alfvén wave collisions, the fundamental building block of plasma turbulence. II. Numerical solution},
author = {Nielson, K. D. and Howes, G. G. and Dorland, W.},
abstractNote = {Here, this paper presents the numerical verification of an asymptotic analytical solution for the nonlinear interaction between counterpropagating Alfvén waves, the fundamental building block of astrophysical plasma turbulence. The analytical solution, derived in the weak turbulence limit using the equations of incompressible MHD, is compared to a nonlinear gyrokinetic simulation of an Alfvén wave collision. Finally, the agreement between these methods signifies that the incompressible solution satisfactorily describes the essential dynamics of the nonlinear energy transfer, even under the weakly collisional plasma conditions relevant to many astrophysical environments.},
doi = {10.1063/1.4812807},
journal = {Physics of Plasmas},
number = 7,
volume = 20,
place = {United States},
year = {Mon Jul 15 00:00:00 EDT 2013},
month = {Mon Jul 15 00:00:00 EDT 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Schematic diagram of the Fourier modes that play a role in the secular transfer of energy to small scales in an Alfvén wave collision. These key Fourier modes are the primary counterpropagating Alfvén waves (red circles), the secondary inherently nonlinear magnetic field fluctuation (green triangle), and the tertiarymore » counterpropagating Alfvén waves (blue squares). The parallel wavenumber $k$$z$ for each of the modes is indicated by the diagonal grey lines, a consequence of the resonance conditions for the wavevector.« less

Save / Share:

Works referenced in this record:

Alfvén wave collisions, the fundamental building block of plasma turbulence. I. Asymptotic solution
journal, July 2013

  • Howes, G. G.; Nielson, K. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4812805

Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria
journal, January 1982


Astrophysical Gyrokinetics: Basic Equations and Linear Theory
journal, November 2006

  • Howes, Gregory G.; Cowley, Steven C.; Dorland, William
  • The Astrophysical Journal, Vol. 651, Issue 1
  • DOI: 10.1086/506172

Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas
journal, May 2009

  • Schekochihin, A. A.; Cowley, S. C.; Dorland, W.
  • The Astrophysical Journal Supplement Series, Vol. 182, Issue 1
  • DOI: 10.1088/0067-0049/182/1/310

A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind: DISSIPATION OF THE SOLAR WIND
journal, May 2008

  • Howes, G. G.; Cowley, S. C.; Dorland, W.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A5
  • DOI: 10.1029/2007JA012665

Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas
journal, February 2008


Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
journal, July 2011


A weakened cascade model for turbulence in astrophysical plasmas
journal, October 2011

  • Howes, G. G.; TenBarge, J. M.; Dorland, W.
  • Physics of Plasmas, Vol. 18, Issue 10
  • DOI: 10.1063/1.3646400

AstroGK: Astrophysical gyrokinetics code
journal, December 2010

  • Numata, Ryusuke; Howes, Gregory G.; Tatsuno, Tomoya
  • Journal of Computational Physics, Vol. 229, Issue 24
  • DOI: 10.1016/j.jcp.2010.09.006

Linearized model Fokker–Planck collision operators for gyrokinetic simulations. I. Theory
journal, December 2008

  • Abel, I. G.; Barnes, M.; Cowley, S. C.
  • Physics of Plasmas, Vol. 15, Issue 12
  • DOI: 10.1063/1.3046067

Linearized model Fokker–Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests
journal, July 2009

  • Barnes, M.; Abel, I. G.; Dorland, W.
  • Physics of Plasmas, Vol. 16, Issue 7
  • DOI: 10.1063/1.3155085

The Hydromagnetic Equations
journal, July 1950


Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence
journal, January 1995

  • Goldreich, P.; Sridhar, S.
  • The Astrophysical Journal, Vol. 438
  • DOI: 10.1086/175121

Current Sheets and Collisionless Damping in Kinetic Plasma Turbulence
journal, June 2013


Nonlinear Phase Mixing and Phase-Space Cascade of Entropy in Gyrokinetic Plasma Turbulence
journal, June 2009


Toward Astrophysical Turbulence in the Laboratory
journal, December 2012


Using Synthetic Spacecraft data to Interpret Compressible Fluctuations in Solar wind Turbulence
journal, August 2012


Resolving velocity space dynamics in continuum gyrokinetics
journal, March 2010

  • Barnes, M.; Dorland, W.; Tatsuno, T.
  • Physics of Plasmas, Vol. 17, Issue 3
  • DOI: 10.1063/1.3313348

Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence
text, January 2008


Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
text, January 2011


Works referencing / citing this record:

The Alfvénic nature of energy transfer mediation in localized, strongly nonlinear Alfvén wavepacket collisions
journal, January 2018


Laboratory space physics: Investigating the physics of space plasmas in the laboratory
journal, May 2018


On the ion-inertial-range density-power spectra in solar wind turbulence
journal, January 2019

  • Treumann, Rudolf A.; Baumjohann, Wolfgang; Narita, Yasuhito
  • Annales Geophysicae, Vol. 37, Issue 2
  • DOI: 10.5194/angeo-37-183-2019

Collisionless energy transfer in kinetic turbulence: field-particle correlations in Fourier space
text, January 2019


On the ion-inertial range density power spectra in solar wind turbulence
posted_content, December 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.