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Introduction
Analytical and semi-analytical approaches to scattering processes from  lipid domains on spherical 
vesicles can provide direct relations between numerical and/or analytical models for interpreting small 
angle neutron or X-ray scattering from such systems.  The vesicle lipid bilayer and the types of domains 
that can be analyzed using the methods mentioned here is shown in Figure 1.

Figure. 1. (Anghel et al 2018) A cross section of a spherical vesicle populated with domains and 
inclusions. The vesicle’s lipid bilayer (i.e., thickness) is made of two lipid leaflets, or monolayers (inner 
and outer). The lipid bilayer may also contain inclusions such as proteins and  cholesterol-rich domains

Analysis and prediction of domain pair correlations from scattering experiments is simplified when using 
the numerical and analytical approaches described herein, thus greatly reducing the need for access to 



powerful computational facilities.  In other words, when analytical models for  phase separated systems 
are made available, data analysis is expedited over a wide range of parameters.

The paper is divided in two parts:

(i) The first part describes a set of general formulas applicable to any hollow sphere populated by a 
finite number of domains of any shape.  Consequently, both intra-domain correlations and center-to-
center correlations are represented by arrays. The inputs for this approach can be either numerical 
results from molecular dynamics (MD) models, or results from other, but simpler analytical models.

(ii) The second part outlines results from analytical models of domains. This part deals specifically with 
circular domains, as both intra-domain and center-to-center correlations are represented by scalars, 
and not by arrays. Both intra- and inter- domain correlations are discussed.

From Model Description to Scattering Theory Results 
 Analytical and numerical models are capable of producing a density function  (in the case of 𝜌(𝒓)
neutrons this is the scattering length density, SLD), which is taken as input by the scattering calculation 
presented here.  The details for computing the integrated cross-section from the SLD are summarized 
below.

The starting point is the calculation of the form factor , which is used to compute the integrated 𝐹(𝒒)
cross-section,  (S. C. Harrison, 1969):𝐼(𝑞)

𝐼(𝑞) =
1

4𝜋∫𝐹(𝒒)𝐹 ∗ (𝒒)𝑑𝑞 .          (1)

The form factor is given by: 

𝐹(𝒒) = ― ∫𝜌(𝒓)𝑒 ―𝑖𝒒 ∙ 𝒓𝑑3𝒓 .          (2) 

The density function is the sum of the contributions from the vesicle wall,  and the domains 𝜇(𝒓), 𝜔(𝒓),  
and is written as: 

𝜌(𝒓) = 𝜇(𝒓) + 𝜔(𝒓)  ,          (3)

where  includes deviations from the vesicle wall density function (i.e., in the absence of domains 𝜔(𝒓) 𝜔
=0).(𝒓)

 is then expressed as a spherical harmonic expansion (Newton 2002) written as follows:𝐹(𝒒)

𝐹(𝒒)
= ― ∫[𝜇(𝑟) + 𝜔(𝒓)]𝑒 ―𝑖𝒒 ∙ 𝒓𝑑3𝒓 = ―4𝜋

(𝑌0
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𝜇(𝑟)𝑟2𝑗0(𝑞𝑟)𝑑𝑟∫𝑌0 ∗
0 (𝑟)𝑑𝑟 + ∑

𝑙,𝑚
( ―𝑖)𝑙𝑌𝑚

𝑙 (𝑞)
∞

∫
0

𝑟2𝑗𝑙(𝑞𝑟)𝑤𝑚
𝑙 (𝑟)𝑑𝑟),          (4)

where  is a spherical harmonic depending on the unit vector,  is a unit vector in the direction of 𝑌𝑚
𝑙 (𝑢)  𝑞 𝒒

,  is a unit vector in the direction of ,  is a spherical Bessel function of the first kind.  Taking 𝑟 𝒓  and 𝑗𝑙



advantage of the linearity of the Born approximation, one can express the total contribution of the 
domains as:

𝜔(𝒓) = ∑
𝐽

𝜔𝐽(𝒓) ,

where  correspond to the domains on the surface.  It should be pointed out that the domains can 𝜔𝐽(𝒓)
be of different shape.

Rotations in spherical harmonics allows for the use of Wigner functions, as the relative positions of the 
domains can be described through rotation transformations (Edmonds 1957).  For example, the position 
of a domain on a spherical surface can be defined by the Euler angles (see general angles in Figure 1 A) 

 (Figure 1 B) that determine its position relative to the sphere’s north pole: determines the 𝛼𝐽,𝛽𝐽,𝛾𝐽 𝛼𝐽

longitude of the domain  center on the sphere,  determines the latitude of the domain center  on 𝐽 𝛽𝐽 𝐽
the sphere, and  determines the rotation of the domain  around its fixed center compared to its 𝛾𝐽 𝐽
position at the north pole, as shown in Figure 1.

Figure 2. (Heberle et al. 2015) Coordinate systems used to define the form factor for a laterally 
heterogeneous vesicle wall  of domains.

If the domains are distributed in a non-random fashion, such as their centers at the vortices of a Platonic 
solid (e.g., black patches on a soccer ball, Figure 3). 



Figure. 3. A sketch of 4 domains placed at the vertices of a regular tetrahedron (shown by dotted lines).

For  regularly distributed domains, the integrated cross-section is given by (Heberle et al. 2015) and 
written as follows:

𝐼(𝒒)
= (4𝜋)2|𝑀0(𝑞)|2 +  2(4𝜋)3/2𝑀0(𝑞)

∑
𝐽

𝑊0(𝛼𝑑,𝐽,𝑞) + 4𝜋∑
𝐽,𝐾

∞

∑
𝑙 = 0

𝑾 ∗
𝑙,𝐽(𝛼𝑑,𝐽)𝐷 ∗

𝑙 (𝛼𝐽,𝛽𝐽,𝛾𝐽)𝐷𝑙(𝛼𝐾,𝛽𝐾,𝛾𝐾) 𝑾𝑙,𝐾(𝛼𝑑,𝐾),  (5)

where  is the contribution resulting from integrating ,  is the  𝑀0(𝑞) 𝜇(𝒓)𝑒 ―𝑖𝒒 ∙ 𝒓 𝑊0(𝛼𝑑,𝐽,𝑞) 𝑙 = 0
contribution from integrating  for the th domain,  is the  Wigner function for 𝜔(𝒓)𝑒 ―𝑖𝒒 ∙ 𝒓 𝐽 𝐷𝑙(𝛼𝐾,𝛽𝐾,𝛾𝐾) 
the th domain, and the intra-domain correlation is represented by the array:𝐾

𝑊′𝑚𝑙,𝐽 (𝛼𝑑,𝐽,𝑞) =
∞

∫
0

𝑟2𝑗𝑙(𝑞𝑟)𝑤𝑚
𝑙 (𝑟)𝑑𝑟.   (6)

For randomly distributed domains, the integrated cross-section is given by (Anghel et al. 2018):

𝐼(𝒒)
= (4𝜋)2|𝑀0(𝑞)|2 + 2(4𝜋)3/2𝑀0(𝑞)

∑
𝐽

𝑊0(𝛼𝑑,𝐽,𝑞) + 4𝜋∑
𝐽,𝐾

∞

∑
𝑙 = 0

〈𝑾 ∗
𝑙,𝐽(𝛼𝑑,𝐽), 𝑪𝑙,  𝐽𝐾(𝛼𝑑,𝐽,𝛼𝑑,𝐾)𝑾𝑙,𝐾(𝛼𝑑,𝐾)〉 , (7)

where  is the form factor of the original vesicle wall  and 2l+1 is the component array 𝑀0(𝑞) 𝑾 ∗
𝑙,𝐽(𝛼𝑑,𝐽),

for the l th harmonic of a domain,  is the center-to-center 𝑪𝑙,  𝐽𝐾(𝛼𝑑,𝐽,𝛼𝑑,𝐾) = 𝐷 ∗
𝑙 (𝛼𝐽,𝛽𝐽,𝛾𝐽)𝐷𝑙(𝛼𝐾,𝛽𝐾,𝛾𝐾)

correlation of the average of Wigner functions given by  an (2l+1  X 2l+1) array for domain center 
correlations, and  denotes a scalar product.  The coefficients in Eq. 7 can be computed either from 〈.,.〉
MD numerical data of the vesicle wall and domains, or from an analytical model. Any other approach 



that produces the intradomain correlation and center-to-center correlations can also provide inputs for 
these formulae. 

Eq. 5 may be used when the domains are ordered on the surface, such as on the vertices of a regular 
polyhedron, while Eq. 7 should be used when the domains are randomly distributed on the vesicle 
surface and are described by a probability distribution function, similar to that of a gas or liquid.

Analytical Form Factors
In the case of circular domains interacting as hard bodies, both intra-domain correlations and 
correlations between domain centers can be computed by simpler methods, either analytical for the 
domain correlation function or by discretization for domain center correlation functions.  Analyses 
dealing with domain area and the number of domains are also easier to perform.  Moreover,  the 
simpler calculations allow for the easier adjustment of parameters, so that the calculated results 
approximate those obtained by experiment.

All analytical cases discussed thus far deal with circular domains and are relatively easy to calculate 
because both spherical and Wigner functions for circular domains reduce to Legendre polynomials 𝑃𝑙

 written as follows:(cos 𝜃𝐽𝐾)

𝐼(𝑞)

= 4𝜋[2 𝜋𝑀0(𝑞) + ∑
𝐽

𝑊0,𝐽(𝛼𝑑,𝐽;𝑞)]2
+ 4𝜋∑

𝐽

∞
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𝑙 = 1

|𝑊𝑙,𝐽(𝛼𝑑,𝐽;𝑞)|2 + 4𝜋

∑
𝐽 ≠ 𝐾

∞

∑
𝑙 = 1

𝑊 0
𝑙,𝐽(𝛼𝑑,𝐽;𝑞)𝑊0

𝑙,𝐾(𝛼𝑑,𝐾;𝑞)𝑃𝑙(cos 𝜃𝐽𝐾),     (8)

where  and  identify domains,  is the angle between vectors pointing from the origin to domain 𝐽 𝐾 𝜃𝐽𝐾

centers  and , and  and  (both real) are given by Eq. 6. The average of  𝐽 𝐾 𝑊 0
𝑙,𝐽(𝛼𝑑;𝑞) 𝑊0

𝑙,𝐾(𝛼𝑑;𝑞) 𝑃𝑙

 is then a simple scalar instead of a matrix.(cos 𝜃𝐽𝐾)

Intradomain Factors
Intra-domain factors can be computed for a variety of circular domains, such as domains of variable 
thickness, half protruding domains, fully protruding domains, annular domains(channels), etc.  In all 
these cases,  is taken as the difference between the density of the domain and that of its 𝜔(𝒓)
neighboring medium for a given height in the wall or outside of it (i.e., within the wall the difference is 
between the domain and wall at a given height;   above the wall the difference is between the density of 
the domain and the outside of the vesicle, similar to the case of protruding inside the vesicle; for 
domains with a hole, the difference is  between the hole contents and the density of the vesicle wall at a 
given height).



Center to Center Correlation
The center-to-center correlation problem does not seem to have an obvious analytical solution.  
However,  an approximate solution can be developed assuming that the domains behave like hard 
particles.  In this case, an equation similar to the Percus Yevick can be assumed, where its numerical 
solution approximates the distribution of hard domains.  If data on inter-domain interactions becomes 
available, other liquid theory equations may be used to describe domains on spherical vesicles.

The centers of domains can be either correlated, where  domains on  the vesicle wall move together, or 
uncorrelated,  where domains in the wall’s two layers move independently of each other.  The scattering 
from the correlated and uncorrelated domains can be estimated.

The center-to-center correlation is simplest (a step function) for the case of only two domains on the 
vesicle wall. In the case of three domains, an analytical formula is derived based on spherical 
trigonometry.

Assuming the domains are hard objects, an analog to the Percus-Yevick (PY) equation was developed as 
an approximation to the exact two domain probability distribution and is  given by:

𝑔𝑁(cos 𝜃) ― 1 ― 𝑐𝑁(cos 𝜃) ― 𝜌∫𝑐𝑁(cos 𝜃′)(𝑔𝑁(Ω′ ∙ Ω) ― 1)sin 𝜃′𝑑𝜃′𝑑𝜑′ +
1
𝑁 = 0.  (9)

 PY conditions for the functions , the analog on the sphere of the radial distribution function and , 𝑔𝑁 𝑐𝑁

the direct correlation function on the sphere are given as:

𝑔(cos 𝜃) = 0, cos 𝜃 < cos 2𝛼𝑑 (10)

𝑐(cos 𝜃) = 0, cos 𝜃 > cos 2𝛼𝑑, (11)

where  is the azimuthal angle on the surface and   is the “radial” domain opening angle. 𝜃 𝛼𝑑

This equation was tested against Monte Carlo results and found to be accurate.  The algorithm used to 
solve it was found to work well for domains covering up to 30% of the vesicle surface.

Summary and Conclusions

We have developed numerical and analytical approaches for computing scattering from domains on 
spherical vesicle walls. The main features of the methods described are:

- (i) There are no real restrictions as to which model can be used for describing the scattering data 
of domains on a vesicle, i.e., the input model may either be numerical or analytical.

- (ii) Analytical approaches have two main advantages:
o Provided with numerical data, they allow for fast computation of the scattering cross-

sections.
o Allow for a  more detailed analysis of experimental data.

- (iii) The number of series terms used in the method depends on the scattering data resolution. 



- (iv) Models for circular rigid domains were introduced. They include exact solutions for 2 and 3 
domains and an analog of the PY equation for multiple domains.

- (v) The described numerical and analytical approaches can be further generalized to describe 
more complicated experimental systems. 
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