DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polymer and composite electrolytes

Abstract

Solid inorganic and polymeric electrolytes have the potential to enable rechargeable batteries with higher energy densities, compared to current lithium-ion technology, which uses liquid electrolyte. Inorganic materials such as ceramics and glasses conduct lithium ions well, but they are brittle, which makes incorporation into a battery difficult. Polymers have the flexibility for facile use in a battery, but their transport properties tend to be inferior to inorganics. Thus, there is growing interest in composite electrolytes with inorganic and organic phases in intimate contact. Here, this article begins with a discussion of ion transport in single-phase electrolytes. A dimensionless number (the Newman number) is presented for quantifying the efficacy of electrolytes. An effective medium framework for predicting transport properties of composite electrolytes containing only one conducting phase is then presented. The opportunities and challenges presented by composite electrolytes containing two conducting phases are addressed. Finally, the importance and status of reaction kinetics at the interfaces between solid electrolytes and electrodes are covered, using a lithium-metal electrode as an example.

Authors:
 [1];  [2];  [3]
  1. Florida State Univ., Tallahassee, FL (United States)
  2. Blue Current, Berkeley, CA (United States)
  3. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1560570
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
MRS Bulletin
Additional Journal Information:
Journal Volume: 43; Journal Issue: 10; Journal ID: ISSN 0883-7694
Publisher:
Materials Research Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Hallinan, Daniel T., Villaluenga, Irune, and Balsara, Nitash P. Polymer and composite electrolytes. United States: N. p., 2018. Web. doi:10.1557/mrs.2018.212.
Hallinan, Daniel T., Villaluenga, Irune, & Balsara, Nitash P. Polymer and composite electrolytes. United States. https://doi.org/10.1557/mrs.2018.212
Hallinan, Daniel T., Villaluenga, Irune, and Balsara, Nitash P. Mon . "Polymer and composite electrolytes". United States. https://doi.org/10.1557/mrs.2018.212. https://www.osti.gov/servlets/purl/1560570.
@article{osti_1560570,
title = {Polymer and composite electrolytes},
author = {Hallinan, Daniel T. and Villaluenga, Irune and Balsara, Nitash P.},
abstractNote = {Solid inorganic and polymeric electrolytes have the potential to enable rechargeable batteries with higher energy densities, compared to current lithium-ion technology, which uses liquid electrolyte. Inorganic materials such as ceramics and glasses conduct lithium ions well, but they are brittle, which makes incorporation into a battery difficult. Polymers have the flexibility for facile use in a battery, but their transport properties tend to be inferior to inorganics. Thus, there is growing interest in composite electrolytes with inorganic and organic phases in intimate contact. Here, this article begins with a discussion of ion transport in single-phase electrolytes. A dimensionless number (the Newman number) is presented for quantifying the efficacy of electrolytes. An effective medium framework for predicting transport properties of composite electrolytes containing only one conducting phase is then presented. The opportunities and challenges presented by composite electrolytes containing two conducting phases are addressed. Finally, the importance and status of reaction kinetics at the interfaces between solid electrolytes and electrodes are covered, using a lithium-metal electrode as an example.},
doi = {10.1557/mrs.2018.212},
journal = {MRS Bulletin},
number = 10,
volume = 43,
place = {United States},
year = {Mon Oct 01 00:00:00 EDT 2018},
month = {Mon Oct 01 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 50 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Measurement of a Complete Set of Transport Properties for a Concentrated Solid Polymer Electrolyte Solution
journal, January 1995

  • Ma, Yanping
  • Journal of The Electrochemical Society, Vol. 142, Issue 6
  • DOI: 10.1149/1.2044206

A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
journal, January 2014

  • Seino, Yoshikatsu; Ota, Tsuyoshi; Takada, Kazunori
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE41655K

Interactions of sterically stabilized particles suspended in a polymer solution
journal, May 1986


Analysis of Transference Number Measurements Based on the Potentiostatic Polarization of Solid Polymer Electrolytes
journal, January 1995

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 142, Issue 10
  • DOI: 10.1149/1.2050005

New Insights into the Compositional Dependence of Li-Ion Transport in Polymer–Ceramic Composite Electrolytes
journal, January 2018


Relationship between Steady-State Current in Symmetric Cells and Transference Number of Electrolytes Comprising Univalent and Multivalent Ions
journal, January 2015

  • Balsara, Nitash P.; Newman, John
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0651514jes

Modeling of transport of small molecules in polymer blends: Application of effective medium theory
journal, February 1983


Application of microelectrodes to the study of the Li|Li+ couple in ether solvents. Part 2.—Temperature dependence
journal, January 1986

  • Hedges, William M.; Pletcher, Derek
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 82, Issue 1
  • DOI: 10.1039/f19868200179

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Polyelectrolyte Membranes Containing Lithium Malonato(difluoro)borate for Lithium-Ion Systems
conference, January 2011

  • Driscoll, Peter F.; Yang, Li; Gervais, Matthieu
  • 218th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3557699

Polymer Electrolytes
journal, July 2013


High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


Evaluation of ionic mobility and transference number in a polymeric solid electrolyte by isothermal transient ionic current method
journal, July 1985

  • Watanabe, M.; Rikukawa, M.; Sanui, K.
  • Journal of Applied Physics, Vol. 58, Issue 2
  • DOI: 10.1063/1.336191

The study of lithium electrode reversibility against (PEO)xLiF3CSO3 polymeric electrolytes
journal, December 1983


Complexes of alkali metal ions with poly(ethylene oxide)
journal, November 1973


Mixed phase solid electrolytes with nonconducting polymer binder
journal, August 1990


Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li 7 La 3 Zr 2 O 12 in P(EO) 15 LiTFSI
journal, June 2017


Negative Transference Numbers in Poly(ethylene oxide)-Based Electrolytes
journal, January 2017

  • Pesko, Danielle M.; Timachova, Ksenia; Bhattacharya, Rajashree
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0581711jes

The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Polymer Electrolytes
journal, August 1986


Negative Stefan-Maxwell Diffusion Coefficients and Complete Electrochemical Transport Characterization of Homopolymer and Block Copolymer Electrolytes
journal, January 2018

  • Villaluenga, Irune; Pesko, Danielle M.; Timachova, Ksenia
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0641811jes

Unifying Weak- and Strong-Segregation Block Copolymer Theories
journal, January 1996

  • Matsen, M. W.; Bates, F. S.
  • Macromolecules, Vol. 29, Issue 4
  • DOI: 10.1021/ma951138i

Structural Dynamics of Strongly Segregated Block Copolymer Electrolytes
journal, March 2018


Discharge Characteristics of Lithium Battery Electrodes with a Semiconducting Polymer Studied by Continuum Modeling and Experiment
journal, January 2014

  • Wu, Shao-Ling; Javier, Anna E.; Devaux, Didier
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0261412jes

Quantifying tortuosity in porous Li-ion battery materials
journal, March 2009


Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells
journal, January 1990

  • Fong, Rosamaría
  • Journal of The Electrochemical Society, Vol. 137, Issue 7
  • DOI: 10.1149/1.2086855

Effect of molecular weight on conductivity of polymer electrolytes
journal, November 2011

  • Teran, Alexander A.; Tang, Maureen H.; Mullin, Scott A.
  • Solid State Ionics, Vol. 203, Issue 1
  • DOI: 10.1016/j.ssi.2011.09.021

An electrochemical approach to measuring oxidative stability of solid polymer electrolytes for lithium batteries
journal, November 2016

  • Hallinan, Daniel T.; Rausch, Alexander; McGill, Brandon
  • Chemical Engineering Science, Vol. 154
  • DOI: 10.1016/j.ces.2016.06.054

On the interfacial charge transfer between solid and liquid Li + electrolytes
journal, January 2017

  • Schleutker, Marco; Bahner, Jochen; Tsai, Chih-Long
  • Phys. Chem. Chem. Phys., Vol. 19, Issue 39
  • DOI: 10.1039/C7CP05213H

Synthesis and Characterization of Network Type Single Ion Conductors
journal, March 2004

  • Sun, Xiao-Guang; Reeder, Craig L.; Kerr, John B.
  • Macromolecules, Vol. 37, Issue 6
  • DOI: 10.1021/ma035690g

Diffusion in Lamellae, Cylinders, and Double Gyroid Block Copolymer Nanostructures
journal, August 2018


Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses
journal, February 1983


The effect of molecular weight on cation mobility in polymer electrolytes
journal, March 1993


Quantifying Polarization Losses in an Organic Liquid Electrolyte/Single Ion Conductor Interface
journal, January 2014

  • Mehrotra, Amal; Ross, Philip N.; Srinivasan, Venkat
  • Journal of The Electrochemical Society, Vol. 161, Issue 10
  • DOI: 10.1149/2.0721410jes

Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
journal, December 2015

  • Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 1
  • DOI: 10.1073/pnas.1520394112

Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes
journal, December 1994

  • Lascaud, S.; Perrier, M.; Vallee, A.
  • Macromolecules, Vol. 27, Issue 25
  • DOI: 10.1021/ma00103a034

Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes
journal, June 2016


Superionic conduction in Li 2 S - P 2 S 5 - LiI - glasses
journal, October 1981


Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries
journal, January 2013

  • Gurevitch, Inna; Buonsanti, Raffaella; Teran, Alexander A.
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.117309jes

Steady state current flow in solid binary electrolyte cells
journal, June 1987

  • Bruce, Peter G.; Vincent, Colin A.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 225, Issue 1-2
  • DOI: 10.1016/0022-0728(87)80001-3

The importance of the lithium ion transference number in lithium/polymer cells
journal, September 1994


Lithium-ion conducting ceramic/polyether composites
journal, April 1998


Ion-transport phenomena in concentrated PEO-based composite polymer electrolytes
journal, March 2002


Nanoparticle-Driven Assembly of Highly Conducting Hybrid Block Copolymer Electrolytes
journal, January 2015

  • Villaluenga, Irune; Chen, Xi Chelsea; Devaux, Didier
  • Macromolecules, Vol. 48, Issue 2
  • DOI: 10.1021/ma502234y

Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density
journal, June 1980


Progress in lithium polymer battery R&D
journal, November 2001


Stability of the Gyroid Phase in Diblock Copolymers at Strong Segregation
journal, April 2006

  • Cochran, Eric W.; Garcia-Cervera, Carlos J.; Fredrickson, Glenn H.
  • Macromolecules, Vol. 39, Issue 7
  • DOI: 10.1021/ma0527707

Kinetics of Li-ion transfer reaction at LiMn2O4, LiCoO2, and LiFePO4 cathodes
journal, January 2017

  • Swiderska-Mocek, Agnieszka; Lewandowski, Andrzej
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 5
  • DOI: 10.1007/s10008-016-3499-6

Works referencing / citing this record:

Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries
journal, January 2020


Simultaneously Boosting the Ionic Conductivity and Mechanical Strength of Polymer Gel Electrolyte Membranes by Confining Ionic Liquids into Hollow Silica Nanocavities
journal, September 2019

  • Thapaliya, Bishnu P.; Do‐Thanh, Chi‐Linh; Jafta, Charl J.
  • Batteries & Supercaps, Vol. 2, Issue 12
  • DOI: 10.1002/batt.201900095

Polymeric ionic liquids for lithium-based rechargeable batteries
journal, January 2019

  • Eshetu, Gebrekidan Gebresilassie; Mecerreyes, David; Forsyth, Maria
  • Molecular Systems Design & Engineering, Vol. 4, Issue 2
  • DOI: 10.1039/c8me00103k

Charging toward improved lithium-ion polymer electrolytes: exploiting synergistic experimental and computational approaches to facilitate materials design
journal, January 2019

  • Ketkar, Priyanka M.; Shen, Kuan-Hsuan; Hall, Lisa M.
  • Molecular Systems Design & Engineering, Vol. 4, Issue 2
  • DOI: 10.1039/c8me00105g

Ion transport in polymeric ionic liquids: recent developments and open questions
journal, January 2019

  • Ganesan, Venkat
  • Molecular Systems Design & Engineering, Vol. 4, Issue 2
  • DOI: 10.1039/c8me00114f

Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries
journal, January 2019

  • Falco, Marisa; Ferrari, Stefania; Appetecchi, Giovanni Battista
  • Molecular Systems Design & Engineering, Vol. 4, Issue 4
  • DOI: 10.1039/c9me00050j

Block copolymers for supercapacitors, dielectric capacitors and batteries
journal, March 2019


Electrochemical Kinetics of Lithium Plating and Stripping in Solid Polymer Electrolytes: Pulsed Voltammetry
journal, January 2019

  • Berliner, Marc D.; McGill, Brandon C.; Majeed, Muneeb
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.0851902jes

Thin Solid Electrolyte Layers Enabled by Nanoscopic Polymer Binding
journal, February 2020