DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic Coupling in Metallophthalocyanine–Transition Metal Dichalcogenide Mixed-Dimensional Heterojunctions

Abstract

Mixed-dimensional heterojunctions, such as zero-dimensional (0D) organic molecules deposited on two-dimensional (2D) transition metal dichalcogenides (TMDCs), often exhibit interfacial effects that enhance the properties of the individual constituent layers. Here we report a systematic study of interfacial charge transfer in metallophthalocyanine (MPc) – MoS2 heterojunctions using optical absorption and Raman spectroscopy to elucidate M core (M = first row transition metal), MoS2 layer number, and excitation wavelength effects. Observed phenomena include the emergence of heterojunctionspecific optical absorption transitions and strong Raman enhancement that depends on the M identity. In addition, the Raman enhancement is tunable by excitation laser wavelength and MoS2 layer number, ultimately reaching a maximum enhancement factor of 30x relative to SiO2 substrates. These experimental results, combined with density functional theory (DFT) calculations, indicate strong coupling between nonfrontier MPc orbitals and the MoS2 band structure as well as charge transfer across the heterojunction interface that varies as a function of the MPc electronic structure.

Authors:
 [1];  [2]; ORCiD logo [3];  [2];  [2]; ORCiD logo [4]; ORCiD logo [5];  [6]; ORCiD logo [5]
  1. Northwestern Univ., Evanston, IL (United States); Center for Light Energy Activated Redox Processes, Evanston, IL (United States)
  2. Northwestern Univ., Evanston, IL (United States)
  3. Northwestern Univ., Evanston, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Northwestern Argonne Inst. for Science and Engineering, Evanston, IL (United States)
  5. Northwestern Univ., Evanston, IL (United States); Center for Light Energy Activated Redox Processes, Evanston, IL (United States)
  6. Northwestern Univ., Evanston, IL (United States); Northwestern Argonne Inst. for Science and Engineering, Evanston, IL (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Light Energy Activated Redox Processes (LEAP); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF) - Directorate for Mathematical and Physical Sciences Division of Materials Research (MPS-DMR); National Institute of Standards and Technology (NIST) - Center for Hierarchical Materials Design (CHiMaD); USDOE Office of Science - Office of Basic Energy Sciences - Scientific User Facilities Division; USDOE Office of Science (SC), Basic Energy Sciences (BES); U.S. Department of Defense (DOD); W.M. Keck Foundation
OSTI Identifier:
1558628
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 13; Journal Issue: 4; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; charge transfer; heterojunction; metallophthalocyanine; phthalocyanine; transition metal dichalcogenide

Citation Formats

Amsterdam, Samuel H., Stanev, Teodor K., Zhou, Qunfei, Lou, Alexander J. -T., Bergeron, Hadallia, Darancet, Pierre, Hersam, Mark C., Stern, Nathaniel P., and Marks, Tobin J. Electronic Coupling in Metallophthalocyanine–Transition Metal Dichalcogenide Mixed-Dimensional Heterojunctions. United States: N. p., 2019. Web. doi:10.1021/acsnano.8b09166.
Amsterdam, Samuel H., Stanev, Teodor K., Zhou, Qunfei, Lou, Alexander J. -T., Bergeron, Hadallia, Darancet, Pierre, Hersam, Mark C., Stern, Nathaniel P., & Marks, Tobin J. Electronic Coupling in Metallophthalocyanine–Transition Metal Dichalcogenide Mixed-Dimensional Heterojunctions. United States. https://doi.org/10.1021/acsnano.8b09166
Amsterdam, Samuel H., Stanev, Teodor K., Zhou, Qunfei, Lou, Alexander J. -T., Bergeron, Hadallia, Darancet, Pierre, Hersam, Mark C., Stern, Nathaniel P., and Marks, Tobin J. Fri . "Electronic Coupling in Metallophthalocyanine–Transition Metal Dichalcogenide Mixed-Dimensional Heterojunctions". United States. https://doi.org/10.1021/acsnano.8b09166. https://www.osti.gov/servlets/purl/1558628.
@article{osti_1558628,
title = {Electronic Coupling in Metallophthalocyanine–Transition Metal Dichalcogenide Mixed-Dimensional Heterojunctions},
author = {Amsterdam, Samuel H. and Stanev, Teodor K. and Zhou, Qunfei and Lou, Alexander J. -T. and Bergeron, Hadallia and Darancet, Pierre and Hersam, Mark C. and Stern, Nathaniel P. and Marks, Tobin J.},
abstractNote = {Mixed-dimensional heterojunctions, such as zero-dimensional (0D) organic molecules deposited on two-dimensional (2D) transition metal dichalcogenides (TMDCs), often exhibit interfacial effects that enhance the properties of the individual constituent layers. Here we report a systematic study of interfacial charge transfer in metallophthalocyanine (MPc) – MoS2 heterojunctions using optical absorption and Raman spectroscopy to elucidate M core (M = first row transition metal), MoS2 layer number, and excitation wavelength effects. Observed phenomena include the emergence of heterojunctionspecific optical absorption transitions and strong Raman enhancement that depends on the M identity. In addition, the Raman enhancement is tunable by excitation laser wavelength and MoS2 layer number, ultimately reaching a maximum enhancement factor of 30x relative to SiO2 substrates. These experimental results, combined with density functional theory (DFT) calculations, indicate strong coupling between nonfrontier MPc orbitals and the MoS2 band structure as well as charge transfer across the heterojunction interface that varies as a function of the MPc electronic structure.},
doi = {10.1021/acsnano.8b09166},
journal = {ACS Nano},
number = 4,
volume = 13,
place = {United States},
year = {Fri Mar 08 00:00:00 EST 2019},
month = {Fri Mar 08 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 43 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides
journal, January 2014

  • Jariwala, Deep; Sangwan, Vinod K.; Lauhon, Lincoln J.
  • ACS Nano, Vol. 8, Issue 2
  • DOI: 10.1021/nn500064s

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
journal, November 2012

  • Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras
  • Nature Nanotechnology, Vol. 7, Issue 11, p. 699-712
  • DOI: 10.1038/nnano.2012.193

Synthesis, properties, and optoelectronic applications of two-dimensional MoS 2 and MoS 2 -based heterostructures
journal, January 2018

  • Wang, Hongmei; Li, Chunhe; Fang, Pengfei
  • Chemical Society Reviews, Vol. 47, Issue 16
  • DOI: 10.1039/C8CS00314A

Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Silicon-nitride photonic circuits interfaced with monolayer MoS 2
journal, August 2015

  • Wei, Guohua; Stanev, Teodor K.; Czaplewski, David A.
  • Applied Physics Letters, Vol. 107, Issue 9
  • DOI: 10.1063/1.4929779

Investigation of Band-Offsets at Monolayer–Multilayer MoS 2 Junctions by Scanning Photocurrent Microscopy
journal, March 2015

  • Howell, Sarah L.; Jariwala, Deep; Wu, Chung-Chiang
  • Nano Letters, Vol. 15, Issue 4
  • DOI: 10.1021/nl504311p

Enhanced conductivity along lateral homojunction interfaces of atomically thin semiconductors
journal, February 2017


Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS 2
journal, December 2015


Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures
journal, February 2015

  • Rivera, Pasqual; Schaibley, John R.; Jones, Aaron M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7242

Interlayer Exciton Optoelectronics in a 2D Heterostructure p–n Junction
journal, January 2017


Unusual Exciton–Phonon Interactions at van der Waals Engineered Interfaces
journal, January 2017


Ultrahigh Raman Enhancement on Monolayer MoS 2
journal, June 2016


Enhancement of photodetection characteristics of MoS 2 field effect transistors using surface treatment with copper phthalocyanine
journal, January 2015

  • Pak, Jinsu; Jang, Jingon; Cho, Kyungjune
  • Nanoscale, Vol. 7, Issue 44
  • DOI: 10.1039/C5NR04836B

A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment
journal, July 2013

  • Valley, Nicholas; Greeneltch, Nathan; Van Duyne, Richard P.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 16
  • DOI: 10.1021/jz4012383

Mixed-dimensional van der Waals heterostructures
journal, August 2016

  • Jariwala, Deep; Marks, Tobin J.; Hersam, Mark C.
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4703

Surface chemistry of porphyrins and phthalocyanines
journal, November 2015


Magnetic, electronic, and vibrational properties of metal and fluorinated metal phthalocyanines
journal, April 2013


Electronic structure of copper phthalocyanine: A comparative density functional theory study
journal, April 2008

  • Marom, Noa; Hod, Oded; Scuseria, Gustavo E.
  • The Journal of Chemical Physics, Vol. 128, Issue 16
  • DOI: 10.1063/1.2898540

Electronic structure and bonding in metal phthalocyanines, Metal=Fe, Co, Ni, Cu, Zn, Mg
journal, June 2001

  • Liao, Meng-Sheng; Scheiner, Steve
  • The Journal of Chemical Physics, Vol. 114, Issue 22
  • DOI: 10.1063/1.1367374

Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS 2
journal, April 2014

  • Ling, Xi; Fang, Wenjing; Lee, Yi-Hsien
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl404610c

Significantly Increased Raman Enhancement on MoX 2 (X = S, Se) Monolayers upon Phase Transition
journal, March 2017

  • Yin, Ying; Miao, Peng; Zhang, Yumin
  • Advanced Functional Materials, Vol. 27, Issue 16
  • DOI: 10.1002/adfm.201606694

Enhanced Raman Scattering of Rhodamine 6G Films on Two-Dimensional Transition Metal Dichalcogenides Correlated to Photoinduced Charge Transfer
journal, December 2015


The Raman enhancement effect on a thin GaSe flake and its thickness dependence
journal, January 2015

  • Quan, Lin; Song, Yuqing; Lin, Yue
  • Journal of Materials Chemistry C, Vol. 3, Issue 42
  • DOI: 10.1039/C5TC02209F

Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials
journal, December 2015

  • Lin, Jingjing; Liang, Liangbo; Ling, Xi
  • Journal of the American Chemical Society, Vol. 137, Issue 49
  • DOI: 10.1021/jacs.5b10144

Electrical control of the valley Hall effect in bilayer MoS2 transistors
journal, January 2016


Reduced Dielectric Screening and Enhanced Energy Transfer in Single- and Few-Layer MoS 2
journal, October 2014

  • Prins, Ferry; Goodman, Aaron J.; Tisdale, William A.
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl5019386

Thickness-Dependent Air-Exposure-Induced Phase Transition of CuPc Ultrathin Films to Well-Ordered One-Dimensional Nanocrystals on Layered Substrates
journal, February 2015

  • Zhang, Lei; Yang, Yingguo; Huang, Han
  • The Journal of Physical Chemistry C, Vol. 119, Issue 8
  • DOI: 10.1021/jp512613z

Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Excitation dependent bidirectional electron transfer in phthalocyanine-functionalised MoS 2 nanosheets
journal, January 2016

  • Nguyen, Emily P.; Carey, Benjamin J.; Harrison, Christopher J.
  • Nanoscale, Vol. 8, Issue 36
  • DOI: 10.1039/C6NR04326G

Charge Transfer Exciton and Spin Flipping at Organic–Transition-Metal Dichalcogenide Interfaces
journal, October 2017


Growth of Metal Phthalocyanine on Deactivated Semiconducting Surfaces Steered by Selective Orbital Coupling
journal, August 2015


Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data
journal, February 2009


Rotationally Commensurate Growth of MoS 2 on Epitaxial Graphene
journal, November 2015


Charge transfer effects in surface‐enhanced Raman scattering a)
journal, December 1982

  • Adrian, Frank J.
  • The Journal of Chemical Physics, Vol. 77, Issue 11
  • DOI: 10.1063/1.443800

Raman Scattering from a Molecule–Semiconductor Interface Tuned by an Electric Field: Density Functional Theory Approach
journal, September 2015

  • Hilty, Floyd W.; Kuhlman, Andrew K.; Pauly, Fabian
  • The Journal of Physical Chemistry C, Vol. 119, Issue 40
  • DOI: 10.1021/acs.jpcc.5b08089

Ground-state charge transfer as a mechanism for surface-enhanced Raman scattering
journal, March 1984


Theory of Surface-Enhanced Raman Scattering in Semiconductors
journal, May 2014

  • Lombardi, John R.; Birke, Ronald L.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 20
  • DOI: 10.1021/jp5020675

Understanding the Molecule−Surface Chemical Coupling in SERS
journal, March 2009

  • Morton, Seth M.; Jensen, Lasse
  • Journal of the American Chemical Society, Vol. 131, Issue 11
  • DOI: 10.1021/ja809143c

Graphene-Thickness-Dependent Graphene-Enhanced Raman Scattering
journal, January 2013

  • Ling, Xi; Wu, Juanxia; Xie, Liming
  • The Journal of Physical Chemistry C, Vol. 117, Issue 5
  • DOI: 10.1021/jp310564d

Molecule–substrate interaction channels of metal-phthalocyanines on graphene on Ni(111) surface
journal, March 2011

  • Dou, Weidong; Huang, Shuping; Zhang, R. Q.
  • The Journal of Chemical Physics, Vol. 134, Issue 9
  • DOI: 10.1063/1.3561398

Large Work Function Modulation of Monolayer MoS 2 by Ambient Gases
journal, May 2016


First-Layer Effect in Graphene-Enhanced Raman Scattering
journal, August 2010


Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS 2 –Polymer Heterojunctions
journal, October 2016


Advanced capabilities for materials modelling with Quantum ESPRESSO
journal, October 2017

  • Giannozzi, P.; Andreussi, O.; Brumme, T.
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 46
  • DOI: 10.1088/1361-648X/aa8f79

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Optimized norm-conserving Vanderbilt pseudopotentials
journal, August 2013


Modulating Electronic and Optical Properties of Monolayer MoS 2 Using Nonbonded Phthalocyanine Molecules
journal, January 2017

  • Choudhury, Pabitra; Ravavarapu, Lalitasri; Dekle, Ryan
  • The Journal of Physical Chemistry C, Vol. 121, Issue 5
  • DOI: 10.1021/acs.jpcc.6b11239

Works referencing / citing this record:

High‐Performance NO 2 Sensors Based on Ultrathin Heterogeneous Interface Layers
journal, November 2019

  • Zhu, Yangyang; Xie, Qiang; Sun, Yang
  • Advanced Materials Interfaces, Vol. 7, Issue 1
  • DOI: 10.1002/admi.201901579

Exfoliation and Sensitization of 2D Carbon Nitride for Photoelectrochemical Biosensing under Red Light
journal, December 2019

  • Zhao, Lufang; Ji, Jingjing; Shen, Yanfei
  • Chemistry – A European Journal, Vol. 25, Issue 68
  • DOI: 10.1002/chem.201904076

Two-dimensional (2D) MnIn 2 Se 4 nanosheets with porous structure: a novel photocatalyst for water splitting without sacrificial agents
journal, January 2019

  • Liang, Hui; Feng, Ting; Tan, Shengda
  • Chemical Communications, Vol. 55, Issue 100
  • DOI: 10.1039/c9cc08145c

Multiple roles of a heterointerface in two-dimensional van der Waals heterostructures: insights into energy-related applications
journal, January 2019

  • Zhu, Yuanzhi; Peng, Wenchao; Li, Yang
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/c9ta06395a