DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ensemble-Averaging Resolves Rapid Atmospheric Response to the 2017 Total Solar Eclipse [Rapid Resolution of the Atmospheric Response to the 2017 Total Solar Eclipse]

Abstract

Rapid changes in solar radiative forcing influence heat, scalar and momentum fluxes and thereby shift the trajectory of near-surface atmospheric transitions. Surface fluxes are difficult to obtain during atmospheric transitions by either bulk or eddy-covariance methods because both techniques assume quasi-stationarity in an atmospheric state and require sufficiently long blocks of data, typically on the order of 10–30 min, to obtain statistically significant results. These computational requirements limit the temporal resolution of atmospheric processes that researchers can examine using traditional measurement techniques. In this paper, we present a novel observational approach to calculate surface fluxes at sub-minute temporal resolutions.

Authors:
 [1];  [2];  [3];  [4];  [5];  [5]
  1. Oregon State Univ., Corvallis, OR (United States)
  2. Univ. of Nevada, Reno, NV (United States)
  3. Univ. of Idaho, Moscow, ID (United States)
  4. Univ. of California, Davis, CA (United States)
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1557929
Report Number(s):
LLNL-JRNL-763519
Journal ID: ISSN 2296-6463; 953348
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Frontiers in Earth Science
Additional Journal Information:
Journal Volume: 7; Journal Issue: na; Journal ID: ISSN 2296-6463
Publisher:
Frontiers Research Foundation
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; flux measurement; ensemble averaging; atmospheric stability; non-stationary ABL; total solar eclipse; turbulence time scales; flux averaging techniques

Citation Formats

Higgins, Chad William, Drake, Stephen A., Kelley, Jason, Oldroyd, Holly J., Jensen, Derek D., and Wharton, Sonia. Ensemble-Averaging Resolves Rapid Atmospheric Response to the 2017 Total Solar Eclipse [Rapid Resolution of the Atmospheric Response to the 2017 Total Solar Eclipse]. United States: N. p., 2019. Web. doi:10.3389/feart.2019.00198.
Higgins, Chad William, Drake, Stephen A., Kelley, Jason, Oldroyd, Holly J., Jensen, Derek D., & Wharton, Sonia. Ensemble-Averaging Resolves Rapid Atmospheric Response to the 2017 Total Solar Eclipse [Rapid Resolution of the Atmospheric Response to the 2017 Total Solar Eclipse]. United States. https://doi.org/10.3389/feart.2019.00198
Higgins, Chad William, Drake, Stephen A., Kelley, Jason, Oldroyd, Holly J., Jensen, Derek D., and Wharton, Sonia. Fri . "Ensemble-Averaging Resolves Rapid Atmospheric Response to the 2017 Total Solar Eclipse [Rapid Resolution of the Atmospheric Response to the 2017 Total Solar Eclipse]". United States. https://doi.org/10.3389/feart.2019.00198. https://www.osti.gov/servlets/purl/1557929.
@article{osti_1557929,
title = {Ensemble-Averaging Resolves Rapid Atmospheric Response to the 2017 Total Solar Eclipse [Rapid Resolution of the Atmospheric Response to the 2017 Total Solar Eclipse]},
author = {Higgins, Chad William and Drake, Stephen A. and Kelley, Jason and Oldroyd, Holly J. and Jensen, Derek D. and Wharton, Sonia},
abstractNote = {Rapid changes in solar radiative forcing influence heat, scalar and momentum fluxes and thereby shift the trajectory of near-surface atmospheric transitions. Surface fluxes are difficult to obtain during atmospheric transitions by either bulk or eddy-covariance methods because both techniques assume quasi-stationarity in an atmospheric state and require sufficiently long blocks of data, typically on the order of 10–30 min, to obtain statistically significant results. These computational requirements limit the temporal resolution of atmospheric processes that researchers can examine using traditional measurement techniques. In this paper, we present a novel observational approach to calculate surface fluxes at sub-minute temporal resolutions.},
doi = {10.3389/feart.2019.00198},
journal = {Frontiers in Earth Science},
number = na,
volume = 7,
place = {United States},
year = {Fri Aug 16 00:00:00 EDT 2019},
month = {Fri Aug 16 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: plan view schematic of the experimental layout showing the positions of the instrumentation. The array covered an area of 0.6 ha.

Save / Share:

Works referenced in this record:

Response of the Land‐Atmosphere System Over North‐Central Oklahoma During the 2017 Eclipse
journal, February 2018

  • Turner, D. D.; Wulfmeyer, V.; Behrendt, A.
  • Geophysical Research Letters, Vol. 45, Issue 3
  • DOI: 10.1002/2017GL076908

The Energy Balance Closure Problem: an Overview
journal, September 2008


Atmospheric Turbulence Decay During the Solar Total Eclipse of 11 August 1999
journal, May 2004


Atmospheric gravity wave production for the total eclipse of 11 June 1983
journal, April 1983


Atmospheric changes from solar eclipses
journal, September 2016

  • Aplin, K. L.; Scott, C. J.; Gray, S. L.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, Issue 2077
  • DOI: 10.1098/rsta.2015.0217

Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers
journal, January 1990

  • Kurashima, Toshio; Horiguchi, Tsuneo; Tateda, Mitsuhiro
  • Optics Letters, Vol. 15, Issue 18
  • DOI: 10.1364/OL.15.001038

Distributed temperature sensing (DTS) to characterize the performance of producing oil wells
conference, December 2000

  • Williams, Glynn R.; Brown, George; Hawthorne, William
  • Environmental and Industrial Sensing, SPIE Proceedings
  • DOI: 10.1117/12.411726

Atmospheric gravity waves generated during a solar eclipse
journal, September 1978

  • Goodwin, G. L.; Hobson, G. J.
  • Nature, Vol. 275, Issue 5676
  • DOI: 10.1038/275109a0

Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector
journal, January 1985

  • Dakin, J. P.; Pratt, D. J.; Bibby, G. W.
  • Electronics Letters, Vol. 21, Issue 13
  • DOI: 10.1049/el:19850402

Observation of the Temperature and Pressure Changes During the 30 June 1973 Solar Eclipse
journal, January 1975


Distributed fiber-optic temperature sensing for hydrologic systems: RAPID COMMUNICATION
journal, December 2006

  • Selker, John S.; Thévenaz, Luc; Huwald, Hendrik
  • Water Resources Research, Vol. 42, Issue 12
  • DOI: 10.1029/2006WR005326

Effects of the 20 March 2015 solar eclipse in Strasbourg, France
journal, March 2016

  • Kastendeuch, Pierre P.; Najjar, Georges; Colin, Jérôme
  • Weather, Vol. 71, Issue 3
  • DOI: 10.1002/wea.2673

Observations and numerical simulation of the evolution of the tropical planetary boundary layer during total solar eclipses
journal, January 1990

  • Raman, Sethu; Boone, Phillip; Shankar Rao, K.
  • Atmospheric Environment. Part A. General Topics, Vol. 24, Issue 4
  • DOI: 10.1016/0960-1686(90)90279-V

Meteorological effects of the eclipse of 11 August 1999 in cloudy and clear conditions
journal, February 2003

  • Aplin, K. L.; Harrison, R. G.
  • Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 459, Issue 2030
  • DOI: 10.1098/rspa.2002.1042

Solar Eclipse Effects Observed in the Planetary Boundary Layer over a Desert
journal, May 1997

  • Eaton, F. D.; Hines, J. R.; Hatch, W. H.
  • Boundary-Layer Meteorology, Vol. 83, Issue 2
  • DOI: 10.1023/A:1000219210055

Influence of tee Solar Eclipse of june 8, 1918, Upon-Radiation and Other Meteorological Elements
journal, January 1919


Radiation and Energy Budgets at an Arctic Site during the Solar Eclipse of July 10, 1972
journal, April 1974

  • Stewart, Robert B.; Rouse, Wayne R.
  • Arctic and Alpine Research, Vol. 6, Issue 2
  • DOI: 10.2307/1550088

An Introduction to Boundary Layer Meteorology
book, January 1988


Reflections on the surface energy imbalance problem
journal, April 2012


The solar eclipse: a natural meteorological experiment
journal, September 2016

  • Harrison, R. Giles; Hanna, Edward
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, Issue 2077
  • DOI: 10.1098/rsta.2015.0225

Eclipse-induced wind changes over the British Isles on the 20 March 2015
journal, September 2016

  • Gray, S. L.; Harrison, R. G.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, Issue 2077
  • DOI: 10.1098/rsta.2015.0224

Simulation of the 21 August 2017 Solar Eclipse Using the Whole Atmosphere Community Climate Model-eXtended
journal, May 2018

  • McInerney, Joseph M.; Marsh, Daniel R.; Liu, Han-Li
  • Geophysical Research Letters, Vol. 45, Issue 9
  • DOI: 10.1029/2018GL077723

Effect of the annular solar eclipse of 15 January 2010 on the lower atmospheric boundary layer over a tropical rural station
journal, December 2010

  • Venkat Ratnam, M.; Shravan Kumar, M.; Basha, Ghouse
  • Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 72, Issue 18
  • DOI: 10.1016/j.jastp.2010.10.009

Turbine-scale wind field measurements using dual-Doppler lidar: Turbine-scale wind field measurements using dual-Doppler lidar
journal, December 2013

  • Newsom, Rob K.; Berg, Larry K.; Shaw, William J.
  • Wind Energy, Vol. 18, Issue 2
  • DOI: 10.1002/we.1691

Atmospheric gravity waves induced by a solar eclipse
journal, February 1970


High-resolution wind speed measurements using actively heated fiber optics: AHFO HIGH-RESOLUTION WIND SPEED MEASUREMENTS
journal, November 2015

  • Sayde, Chadi; Thomas, Christoph K.; Wagner, James
  • Geophysical Research Letters, Vol. 42, Issue 22
  • DOI: 10.1002/2015GL066729

Atmospheric effects of the total solar eclipse of 4 December 2002 simulated with a high-altitude global model
journal, January 2007

  • Eckermann, S. D.; Broutman, D.; Stollberg, M. T.
  • Journal of Geophysical Research, Vol. 112, Issue D14
  • DOI: 10.1029/2006JD007880

Eddy Covariance
book, January 2012


The eclipse cyclone, the diurnal cyclones, and the cyclones and anticyclones of temperate latitudes
journal, October 1901

  • Clayton, H. Helm
  • Quarterly Journal of the Royal Meteorological Society, Vol. 27, Issue 120
  • DOI: 10.1002/qj.49702712004

Response of atmospheric surface layer turbulence to a partial solar eclipse
journal, April 1979

  • Antonia, R. A.; Chambers, A. J.; Phong-Anant, D.
  • Journal of Geophysical Research: Oceans, Vol. 84, Issue C4
  • DOI: 10.1029/JC084iC04p01689

Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign
journal, January 2017

  • Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.
  • Atmospheric Measurement Techniques, Vol. 10, Issue 1
  • DOI: 10.5194/amt-10-247-2017

The effect of the total solar eclipse of 29 March 2006 on meteorological variables in Greece
journal, January 2007

  • Founda, D.; Melas, D.; Lykoudis, S.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 21
  • DOI: 10.5194/acp-7-5543-2007

Fiber optics opens window on stream dynamics
journal, January 2006

  • Selker, John; van de Giesen, Nick; Westhoff, Martijn
  • Geophysical Research Letters, Vol. 33, Issue 24
  • DOI: 10.1029/2006GL027979