DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: STING Polymer Structure Reveals Mechanisms for Activation, Hyperactivation, and Inhibition

Abstract

How the central innate immune protein, STING, is activated by its ligands remains unknown. In this study, using structural biology and biochemistry, we report that the metazoan second messenger 2'3'-cGAMP induces closing of the human STING homodimer and release of the STING C-terminal tail, which exposes a polymerization interface on the STING dimer and leads to the formation of disulfide-linked polymers via cysteine residue 148. Disease-causing hyperactive STING mutations either flank C148 and depend on disulfide formation or reside in the C-terminal tail binding site and cause constitutive C-terminal tail release and polymerization. Finally, bacterial cyclic-di-GMP induces an alternative active STING conformation, activates STING in a cooperative manner, and acts as a partial antagonist of 2'3'-cGAMP signaling. In conclusion, our insights explain the tight control of STING signaling given varying background activation signals and provide a therapeutic hypothesis for autoimmune syndrome treatment.

Authors:
 [1];  [1];  [2];  [1]
  1. Stanford Univ., CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1546886
Grant/Contract Number:  
AC02-76SF00515; P41GM103393; 5 T32 GM007276
Resource Type:
Accepted Manuscript
Journal Name:
Cell
Additional Journal Information:
Journal Volume: 178; Journal Issue: 2; Journal ID: ISSN 0092-8674
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; STING; cGAMP; 2′3′-cGAMP; innate immunity; STING associated vasculopathy with onset in infancy; SAVI; TMEM173; cyclic-di-GMPcyclic-di-AMP; cyclic-dinucleotide

Citation Formats

Ergun, Sabrina L., Fernandez, Daniel, Weiss, Thomas M., and Li, Lingyin. STING Polymer Structure Reveals Mechanisms for Activation, Hyperactivation, and Inhibition. United States: N. p., 2019. Web. doi:10.1016/j.cell.2019.05.036.
Ergun, Sabrina L., Fernandez, Daniel, Weiss, Thomas M., & Li, Lingyin. STING Polymer Structure Reveals Mechanisms for Activation, Hyperactivation, and Inhibition. United States. https://doi.org/10.1016/j.cell.2019.05.036
Ergun, Sabrina L., Fernandez, Daniel, Weiss, Thomas M., and Li, Lingyin. Thu . "STING Polymer Structure Reveals Mechanisms for Activation, Hyperactivation, and Inhibition". United States. https://doi.org/10.1016/j.cell.2019.05.036. https://www.osti.gov/servlets/purl/1546886.
@article{osti_1546886,
title = {STING Polymer Structure Reveals Mechanisms for Activation, Hyperactivation, and Inhibition},
author = {Ergun, Sabrina L. and Fernandez, Daniel and Weiss, Thomas M. and Li, Lingyin},
abstractNote = {How the central innate immune protein, STING, is activated by its ligands remains unknown. In this study, using structural biology and biochemistry, we report that the metazoan second messenger 2'3'-cGAMP induces closing of the human STING homodimer and release of the STING C-terminal tail, which exposes a polymerization interface on the STING dimer and leads to the formation of disulfide-linked polymers via cysteine residue 148. Disease-causing hyperactive STING mutations either flank C148 and depend on disulfide formation or reside in the C-terminal tail binding site and cause constitutive C-terminal tail release and polymerization. Finally, bacterial cyclic-di-GMP induces an alternative active STING conformation, activates STING in a cooperative manner, and acts as a partial antagonist of 2'3'-cGAMP signaling. In conclusion, our insights explain the tight control of STING signaling given varying background activation signals and provide a therapeutic hypothesis for autoimmune syndrome treatment.},
doi = {10.1016/j.cell.2019.05.036},
journal = {Cell},
number = 2,
volume = 178,
place = {United States},
year = {Thu Jun 20 00:00:00 EDT 2019},
month = {Thu Jun 20 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 132 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING
journal, May 2013

  • Ablasser, Andrea; Goldeck, Marion; Cavlar, Taner
  • Nature, Vol. 498, Issue 7454
  • DOI: 10.1038/nature12306

STING manifests self DNA-dependent inflammatory disease
journal, November 2012

  • Ahn, J.; Gutman, D.; Saijo, S.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 47
  • DOI: 10.1073/pnas.1215006109

IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes
journal, February 2017

  • Almine, Jessica F.; O’Hare, Craig A. J.; Dunphy, Gillian
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14392

Group B Streptococcus Degrades Cyclic-di-AMP to Modulate STING-Dependent Type I Interferon Production
journal, July 2016


STING is a direct innate immune sensor of cyclic di-GMP
journal, September 2011

  • Burdette, Dara L.; Monroe, Kathryn M.; Sotelo-Troha, Katia
  • Nature, Vol. 478, Issue 7370
  • DOI: 10.1038/nature10429

Activation of STAT6 by STING Is Critical for Antiviral Innate Immunity
journal, October 2011


Novel c-di-GMP recognition modes of the mouse innate immune adaptor protein STING
journal, February 2013

  • Chin, Ko-Hsin; Tu, Zhi-Le; Su, Yi-Che
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 3
  • DOI: 10.1107/S0907444912047269

Mouse, but not Human STING, Binds and Signals in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid
journal, April 2013

  • Conlon, Joseph; Burdette, Dara L.; Sharma, Shruti
  • The Journal of Immunology, Vol. 190, Issue 10
  • DOI: 10.4049/jimmunol.1300097

Extremely potent immunotherapeutic activity of a STING agonist in the B16 melanoma model in vivo
journal, November 2013

  • Corrales, Leticia; Woo, Seng-Ryong; Gajewski, Thomas F.
  • Journal for ImmunoTherapy of Cancer, Vol. 1, Issue S1
  • DOI: 10.1186/2051-1426-1-S1-O15

Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity
journal, May 2015


A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis
journal, March 2015

  • Dey, Bappaditya; Dey, Ruchi Jain; Cheung, Laurene S.
  • Nature Medicine, Vol. 21, Issue 4
  • DOI: 10.1038/nm.3813

The Innate Immune DNA Sensor cGAS Produces a Noncanonical Cyclic Dinucleotide that Activates Human STING
journal, May 2013


STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease
journal, August 2015


DNA-induced liquid phase condensation of cGAS activates innate immune signaling
journal, July 2018


Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

An introduction to data reduction: space-group determination, scaling and intensity statistics
journal, March 2011

  • Evans, Philip R.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S090744491003982X

STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade
journal, April 2015


Using circular dichroism spectra to estimate protein secondary structure
journal, January 2007


Targeting STING with covalent small-molecule inhibitors
journal, July 2018


MAVS Forms Functional Prion-like Aggregates to Activate and Propagate Antiviral Innate Immune Response
journal, August 2011


The structural basis for the sensing and binding of cyclic di-GMP by STING
journal, June 2012

  • Huang, Yi-He; Liu, Xiang-Yu; Du, Xiao-Xia
  • Nature Structural & Molecular Biology, Vol. 19, Issue 7
  • DOI: 10.1038/nsmb.2333

STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
journal, August 2008


STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
journal, September 2009

  • Ishikawa, Hiroki; Ma, Zhe; Barber, Glen N.
  • Nature, Vol. 461, Issue 7265
  • DOI: 10.1038/nature08476

Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations
journal, November 2014

  • Jeremiah, Nadia; Neven, Bénédicte; Gentili, Matteo
  • Journal of Clinical Investigation, Vol. 124, Issue 12
  • DOI: 10.1172/JCI79100

MPYS, a Novel Membrane Tetraspanner, Is Associated with Major Histocompatibility Complex Class II and Mediates Transduction of Apoptotic Signals
journal, August 2008

  • Jin, Lei; Waterman, Paul M.; Jonscher, Karen R.
  • Molecular and Cellular Biology, Vol. 28, Issue 16
  • DOI: 10.1128/MCB.00640-08

XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/S0907444909047337

Anticancer Flavonoids Are Mouse-Selective STING Agonists
journal, May 2013

  • Kim, Sujeong; Li, Lingyin; Maliga, Zoltan
  • ACS Chemical Biology, Vol. 8, Issue 7
  • DOI: 10.1021/cb400264n

IRF3 and type I interferons fuel a fatal response to myocardial infarction
journal, November 2017

  • King, Kevin R.; Aguirre, Aaron D.; Ye, Yu-Xiang
  • Nature Medicine, Vol. 23, Issue 12
  • DOI: 10.1038/nm.4428

Cyclic Dinucleotides Trigger ULK1 (ATG1) Phosphorylation of STING to Prevent Sustained Innate Immune Signaling
journal, October 2013


Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2′,3′ cGAMP Signaling
journal, September 2015


Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects
journal, August 2013


Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs
journal, October 2014

  • Li, Lingyin; Yin, Qian; Kuss, Pia
  • Nature Chemical Biology, Vol. 10, Issue 12
  • DOI: 10.1038/nchembio.1661

PPM1A Regulates Antiviral Signaling by Antagonizing TBK1-Mediated STING Phosphorylation and Aggregation
journal, March 2015


Activated STING in a Vascular and Pulmonary Syndrome
journal, August 2014

  • Liu, Yin; Jesus, Adriana A.; Marrero, Bernadette
  • New England Journal of Medicine, Vol. 371, Issue 6
  • DOI: 10.1056/NEJMoa1312625

Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
journal, January 2015


An integrated high-throughput data acquisition system for biological solution X-ray scattering studies
journal, March 2012

  • Martel, Anne; Liu, Ping; Weiss, Thomas M.
  • Journal of Synchrotron Radiation, Vol. 19, Issue 3
  • DOI: 10.1107/S0909049512008072

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP
journal, August 2009

  • McWhirter, Sarah M.; Barbalat, Roman; Monroe, Kathryn M.
  • Journal of Experimental Medicine, Vol. 206, Issue 9
  • DOI: 10.1084/jem.20082874

Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling
journal, August 2017

  • Melki, Isabelle; Rose, Yoann; Uggenti, Carolina
  • Journal of Allergy and Clinical Immunology, Vol. 140, Issue 2
  • DOI: 10.1016/j.jaci.2016.10.031

Activation of STING requires palmitoylation at the Golgi
journal, June 2016

  • Mukai, Kojiro; Konno, Hiroyasu; Akiba, Tatsuya
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11932

Structural Analysis of the STING Adaptor Protein Reveals a Hydrophobic Dimer Interface and Mode of Cyclic di-GMP Binding
journal, June 2012


Quantitative multiplex real-time PCR for the sensitive detection of interferon β gene induction and viral suppression of interferon β expression
journal, December 2003


The Stanford Automated Mounter: pushing the limits of sample exchange at the SSRL macromolecular crystallography beamlines
journal, February 2016

  • Russi, Silvia; Song, Jinhu; McPhillips, Scott E.
  • Journal of Applied Crystallography, Vol. 49, Issue 2
  • DOI: 10.1107/S1600576716000649

A Mutation Outside the Dimerization Domain Causing Atypical STING-Associated Vasculopathy With Onset in Infancy
journal, July 2018

  • Saldanha, Rohit G.; Balka, Katherine R.; Davidson, Sophia
  • Frontiers in Immunology, Vol. 9
  • DOI: 10.3389/fimmu.2018.01535

Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP
journal, June 2012

  • Shang, Guijun; Zhu, Deyu; Li, Ning
  • Nature Structural & Molecular Biology, Vol. 19, Issue 7
  • DOI: 10.1038/nsmb.2332

Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP
journal, March 2019


Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING
journal, July 2015

  • Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 29
  • DOI: 10.1073/pnas.1507317112

Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system
journal, June 2012

  • Shu, Chang; Yi, Guanghui; Watts, Tylan
  • Nature Structural & Molecular Biology, Vol. 19, Issue 7
  • DOI: 10.1038/nsmb.2331

Biological small-angle X-ray scattering facility at the Stanford Synchrotron Radiation Laboratory
journal, April 2007

  • Smolsky, Igor L.; Liu, Ping; Niebuhr, Marc
  • Journal of Applied Crystallography, Vol. 40, Issue s1
  • DOI: 10.1107/S0021889807009624

ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
journal, May 2009

  • Sun, W.; Li, Y.; Chen, L.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 21
  • DOI: 10.1073/pnas.0900850106

Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway
journal, December 2012


STING Specifies IRF3 Phosphorylation by TBK1 in the Cytosolic DNA Signaling Pathway
journal, March 2012


Human autoimmune diseases: a comprehensive update
journal, July 2015

  • Wang, Lifeng; Wang, Fu-Sheng; Gershwin, M. Eric
  • Journal of Internal Medicine, Vol. 278, Issue 4
  • DOI: 10.1111/joim.12395

Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors
journal, November 2014


c-di-AMP Secreted by Intracellular Listeria monocytogenes Activates a Host Type I Interferon Response
journal, May 2010


Structural Basis for dsRNA Recognition, Filament Formation, and Antiviral Signal Activation by MDA5
journal, January 2013


Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA
journal, December 2012


Cyclic di-GMP Sensing via the Innate Immune Signaling Protein STING
journal, June 2012


Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High-Affinity Ligand for STING
journal, July 2013


STING Signaling Promotes Inflammation in Experimental Acute Pancreatitis
journal, May 2018


The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation
journal, October 2008


Activation of STAT6 by STING Is Critical for Antiviral Innate Immunity
journal, October 2011


Works referencing / citing this record:

Regulation of cGAS- and RLR-mediated immunity to nucleic acids
journal, December 2019


STING Activation and its Application in Immuno-Oncology
journal, November 2019