DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Differential active site requirements for NDM-1 β-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics

Abstract

New Delhi metallo-β-lactamase-1 exhibits a broad substrate profile for hydrolysis of the penicillin, cephalosporin and 'last resort' carbapenems, and thus confers bacterial resistance to nearly all β-lactam antibiotics. Here we address whether the high catalytic efficiency for hydrolysis of these diverse substrates is reflected by similar sequence and structural requirements for catalysis, i.e., whether the same catalytic machinery is used to achieve hydrolysis of each class. Deep sequencing of randomized single codon mutation libraries that were selected for resistance to representative antibiotics reveal stringent sequence requirements for carbapenem versus penicillin or cephalosporin hydrolysis. Further, the residue positions required for hydrolysis of penicillins and cephalosporins are a subset of those required for carbapenem hydrolysis. Thus, while a common core of residues is used for catalysis of all substrates, carbapenem hydrolysis requires an additional set of residues to achieve catalytic efficiency comparable to that for penicillins and cephalosporins.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [1];  [1]
  1. Baylor College of Medicine, Houston, TX (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1546626
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES

Citation Formats

Sun, Zhizeng, Hu, Liya, Sankaran, Banumathi, Prasad, B. V. Venkataram, and Palzkill, Timothy. Differential active site requirements for NDM-1 β-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics. United States: N. p., 2018. Web. doi:10.1038/s41467-018-06839-1.
Sun, Zhizeng, Hu, Liya, Sankaran, Banumathi, Prasad, B. V. Venkataram, & Palzkill, Timothy. Differential active site requirements for NDM-1 β-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics. United States. https://doi.org/10.1038/s41467-018-06839-1
Sun, Zhizeng, Hu, Liya, Sankaran, Banumathi, Prasad, B. V. Venkataram, and Palzkill, Timothy. Tue . "Differential active site requirements for NDM-1 β-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics". United States. https://doi.org/10.1038/s41467-018-06839-1. https://www.osti.gov/servlets/purl/1546626.
@article{osti_1546626,
title = {Differential active site requirements for NDM-1 β-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics},
author = {Sun, Zhizeng and Hu, Liya and Sankaran, Banumathi and Prasad, B. V. Venkataram and Palzkill, Timothy},
abstractNote = {New Delhi metallo-β-lactamase-1 exhibits a broad substrate profile for hydrolysis of the penicillin, cephalosporin and 'last resort' carbapenems, and thus confers bacterial resistance to nearly all β-lactam antibiotics. Here we address whether the high catalytic efficiency for hydrolysis of these diverse substrates is reflected by similar sequence and structural requirements for catalysis, i.e., whether the same catalytic machinery is used to achieve hydrolysis of each class. Deep sequencing of randomized single codon mutation libraries that were selected for resistance to representative antibiotics reveal stringent sequence requirements for carbapenem versus penicillin or cephalosporin hydrolysis. Further, the residue positions required for hydrolysis of penicillins and cephalosporins are a subset of those required for carbapenem hydrolysis. Thus, while a common core of residues is used for catalysis of all substrates, carbapenem hydrolysis requires an additional set of residues to achieve catalytic efficiency comparable to that for penicillins and cephalosporins.},
doi = {10.1038/s41467-018-06839-1},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {Tue Oct 30 00:00:00 EDT 2018},
month = {Tue Oct 30 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 47 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Structural and Mechanistic Insights into NDM-1 Catalyzed Hydrolysis of Cephalosporins
journal, October 2014

  • Feng, Han; Ding, Jingjin; Zhu, Deyu
  • Journal of the American Chemical Society, Vol. 136, Issue 42
  • DOI: 10.1021/ja508388e

Molecular Basis of NDM-1, a New Antibiotic Resistance Determinant
journal, August 2011


Overcoming differences: The catalytic mechanism of metallo-β-lactamases
journal, August 2015


Network analysis of protein dynamics
journal, May 2007


Contributions of Aspartate 49 and Phenylalanine 142 Residues of a Tight Binding Inhibitory Protein of β-Lactamases
journal, January 1999

  • Petrosino, Joseph; Rudgers, Gary; Gilbert, Hiram
  • Journal of Biological Chemistry, Vol. 274, Issue 4
  • DOI: 10.1074/jbc.274.4.2394

Structural Basis for Clinical Longevity of Carbapenem Antibiotics in the Face of Challenge by the Common Class A β-Lactamases from the Antibiotic-Resistant Bacteria
journal, September 1998

  • Maveyraud, Laurent; Mourey, Lionel; Kotra, Lakshmi P.
  • Journal of the American Chemical Society, Vol. 120, Issue 38
  • DOI: 10.1021/ja9818001

Understanding the Differences between Genome Sequences of Escherichia coli B Strains REL606 and BL21(DE3) and Comparison of the E. coli B and K-12 Genomes
journal, December 2009

  • Studier, F. William; Daegelen, Patrick; Lenski, Richard E.
  • Journal of Molecular Biology, Vol. 394, Issue 4
  • DOI: 10.1016/j.jmb.2009.09.021

Update of the Standard Numbering Scheme for Class B  -Lactamases
journal, June 2004


Uncovering Network Systems Within Protein Structures
journal, December 2003


Common Mechanistic Features among Metallo-β-lactamases: A COMPUTATIONAL STUDY OF AEROMONAS HYDROPHILA CphA ENZYME
journal, August 2009

  • Simona, Fabio; Magistrato, Alessandra; Dal Peraro, Matteo
  • Journal of Biological Chemistry, Vol. 284, Issue 41
  • DOI: 10.1074/jbc.M109.049502

Metallo-β-lactamase structure and function: Metallo-β-lactamase structure and function
journal, November 2012


Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism
journal, August 2011


Progress toward inhibitors of metallo-β-lactamases
journal, May 2017

  • McGeary, Ross P.; Tan, Daniel TC; Schenk, Gerhard
  • Future Medicinal Chemistry, Vol. 9, Issue 7
  • DOI: 10.4155/fmc-2017-0007

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Deep Sequencing of Systematic Combinatorial Libraries Reveals β-Lactamase Sequence Constraints at High Resolution
journal, December 2012

  • Deng, Zhifeng; Huang, Wanzhi; Bakkalbasi, Erol
  • Journal of Molecular Biology, Vol. 424, Issue 3-4
  • DOI: 10.1016/j.jmb.2012.09.014

The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters
journal, May 2011

  • Bar-Even, Arren; Noor, Elad; Savir, Yonatan
  • Biochemistry, Vol. 50, Issue 21
  • DOI: 10.1021/bi2002289

Mechanism of Meropenem Hydrolysis by New Delhi Metallo β-Lactamase
journal, March 2015


Metallo-β-lactamases:  Novel Weaponry for Antibiotic Resistance in Bacteria
journal, October 2006

  • Crowder, Michael W.; Spencer, James; Vila, Alejandro J.
  • Accounts of Chemical Research, Vol. 39, Issue 10
  • DOI: 10.1021/ar0400241

Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae
journal, October 2010


An efficient one-step site-directed and site-saturation mutagenesis protocol
journal, August 2004


PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Three Decades of  -Lactamase Inhibitors
journal, January 2010

  • Drawz, S. M.; Bonomo, R. A.
  • Clinical Microbiology Reviews, Vol. 23, Issue 1
  • DOI: 10.1128/CMR.00037-09

Structural Insights into the Design of Inhibitors for the L1 Metallo-β-lactamase from Stenotrophomonas maltophilia
journal, January 2008


The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins
journal, June 2007


Sequence logos: a new way to display consensus sequences
journal, January 1990

  • Schneider, Thomas D.; Stephens, R. Michael
  • Nucleic Acids Research, Vol. 18, Issue 20
  • DOI: 10.1093/nar/18.20.6097

Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance
journal, August 2011

  • King, Dustin; Strynadka, Natalie
  • Protein Science, Vol. 20, Issue 9
  • DOI: 10.1002/pro.697

New Delhi Metallo-β-Lactamase: Structural Insights into β-Lactam Recognition and Inhibition
journal, July 2012

  • King, Dustin T.; Worrall, Liam J.; Gruninger, Robert
  • Journal of the American Chemical Society, Vol. 134, Issue 28
  • DOI: 10.1021/ja303579d

Analysis of the Context Dependent Sequence Requirements of Active Site Residues in the Metallo-β-lactamase IMP-1
journal, November 2004

  • Materon, Isabel C.; Beharry, Zanna; Huang, Wanzhi
  • Journal of Molecular Biology, Vol. 344, Issue 3
  • DOI: 10.1016/j.jmb.2004.09.074

Dramatic Broadening of the Substrate Profile of the Aeromonas hydrophila CphA Metallo-β-lactamase by Site-directed Mutagenesis
journal, April 2005

  • Bebrone, Carine; Anne, Christine; De Vriendt, Kris
  • Journal of Biological Chemistry, Vol. 280, Issue 31
  • DOI: 10.1074/jbc.M414052200

Characterization of Purified New Delhi Metallo-β-lactamase-1
journal, November 2011

  • Thomas, Pei W.; Zheng, Min; Wu, Shanshan
  • Biochemistry, Vol. 50, Issue 46
  • DOI: 10.1021/bi201449r

Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates
journal, August 2016

  • Brem, Jürgen; Cain, Ricky; Cahill, Samuel
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12406

Antibiotic Recognition by Binuclear Metallo-β-Lactamases Revealed by X-ray Crystallography #
journal, October 2005

  • Spencer, James; Read, Jonathan; Sessions, Richard B.
  • Journal of the American Chemical Society, Vol. 127, Issue 41
  • DOI: 10.1021/ja0536062

UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

[20] Processing of X-ray diffraction data collected in oscillation mode
book, January 1997


Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

Information-theoretical entropy as a measure of sequence variability
journal, December 1991

  • Shenkin, Peter S.; Erman, Batu; Mastrandrea, Lucy D.
  • Proteins: Structure, Function, and Genetics, Vol. 11, Issue 4
  • DOI: 10.1002/prot.340110408

Proliferation and significance of clinically relevant β-lactamases: β-lactamase overview
journal, January 2013

  • Bush, Karen
  • Annals of the New York Academy of Sciences, Vol. 1277, Issue 1
  • DOI: 10.1111/nyas.12023

A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases
journal, September 2017

  • Lisa, María-Natalia; Palacios, Antonela R.; Aitha, Mahesh
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-00601-9

The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis
journal, December 2017


Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations
journal, September 2016

  • Sun, Zhizeng; Mehta, Shrenik C.; Adamski, Carolyn J.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33195

Insights into an evolutionary strategy leading to antibiotic resistance
journal, January 2017

  • Hou, Chun-Feng D.; Liu, Jian-wei; Collyer, Charles
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep40357

PARP1 exhibits enhanced association and catalytic efficiency with γH2A.X-nucleosome
journal, December 2019


Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation
journal, February 2021


Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods
journal, January 2021


Metallo-β-lactamases: Novel Weaponry for Antibiotic Resistance in Bacteria
journal, January 2007

  • Crowder, Michael W.; Spencer, James; Vila, Alejandro J.
  • ChemInform, Vol. 38, Issue 3
  • DOI: 10.1002/chin.200703266

An efficient one-step site-directed and site-saturation mutagenesis protocol
text, January 2004

  • Zheng, Lei; Baumann, Ulrich; Reymond, Jean-Louis
  • Oxford University Press
  • DOI: 10.7892/boris.116109

PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

Network analysis of protein dynamics
text, January 2007


Information-theoretical entropy as a measure of sequence variability
journal, December 1991

  • Shenkin, Peter S.; Erman, Batu; Mastrandrea, Lucy D.
  • Proteins: Structure, Function, and Genetics, Vol. 11, Issue 4
  • DOI: 10.1002/prot.340110408

Network analysis of protein dynamics
journal, May 2007


Overcoming differences: The catalytic mechanism of metallo-β-lactamases
journal, August 2015


Analysis of the Context Dependent Sequence Requirements of Active Site Residues in the Metallo-β-lactamase IMP-1
journal, November 2004

  • Materon, Isabel C.; Beharry, Zanna; Huang, Wanzhi
  • Journal of Molecular Biology, Vol. 344, Issue 3
  • DOI: 10.1016/j.jmb.2004.09.074

Understanding the Differences between Genome Sequences of Escherichia coli B Strains REL606 and BL21(DE3) and Comparison of the E. coli B and K-12 Genomes
journal, December 2009

  • Studier, F. William; Daegelen, Patrick; Lenski, Richard E.
  • Journal of Molecular Biology, Vol. 394, Issue 4
  • DOI: 10.1016/j.jmb.2009.09.021

Deep Sequencing of Systematic Combinatorial Libraries Reveals β-Lactamase Sequence Constraints at High Resolution
journal, December 2012

  • Deng, Zhifeng; Huang, Wanzhi; Bakkalbasi, Erol
  • Journal of Molecular Biology, Vol. 424, Issue 3-4
  • DOI: 10.1016/j.jmb.2012.09.014

Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae
journal, October 2010


Metallo-β-lactamases:  Novel Weaponry for Antibiotic Resistance in Bacteria
journal, October 2006

  • Crowder, Michael W.; Spencer, James; Vila, Alejandro J.
  • Accounts of Chemical Research, Vol. 39, Issue 10
  • DOI: 10.1021/ar0400241

Antibiotic Recognition by Binuclear Metallo-β-Lactamases Revealed by X-ray Crystallography #
journal, October 2005

  • Spencer, James; Read, Jonathan; Sessions, Richard B.
  • Journal of the American Chemical Society, Vol. 127, Issue 41
  • DOI: 10.1021/ja0536062

New Delhi Metallo-β-Lactamase: Structural Insights into β-Lactam Recognition and Inhibition
journal, July 2012

  • King, Dustin T.; Worrall, Liam J.; Gruninger, Robert
  • Journal of the American Chemical Society, Vol. 134, Issue 28
  • DOI: 10.1021/ja303579d

A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases
journal, September 2017

  • Lisa, María-Natalia; Palacios, Antonela R.; Aitha, Mahesh
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-00601-9

Insights into an evolutionary strategy leading to antibiotic resistance
journal, January 2017

  • Hou, Chun-Feng D.; Liu, Jian-wei; Collyer, Charles
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep40357

Contributions of Aspartate 49 and Phenylalanine 142 Residues of a Tight Binding Inhibitory Protein of β-Lactamases
journal, January 1999

  • Petrosino, Joseph; Rudgers, Gary; Gilbert, Hiram
  • Journal of Biological Chemistry, Vol. 274, Issue 4
  • DOI: 10.1074/jbc.274.4.2394

Catalytic Mechanism of Class B2 Metallo-β-lactamase
journal, January 2006

  • Xu, Dingguo; Xie, Daiqian; Guo, Hua
  • Journal of Biological Chemistry, Vol. 281, Issue 13
  • DOI: 10.1074/jbc.m512517200

Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogensin vitroandin vivo
journal, December 2016

  • Sully, Erin K.; Geller, Bruce L.; Li, Lixin
  • Journal of Antimicrobial Chemotherapy
  • DOI: 10.1093/jac/dkw476

Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism
journal, August 2011


Analysis of the Functional Contributions of Asn233 in Metallo-β-Lactamase IMP-1
journal, September 2011

  • Brown, Nicholas G.; Horton, Lori B.; Huang, Wanzhi
  • Antimicrobial Agents and Chemotherapy, Vol. 55, Issue 12
  • DOI: 10.1128/aac.00340-11

Crystal Structure of the Mobile Metallo-β-Lactamase AIM-1 from Pseudomonas aeruginosa: Insights into Antibiotic Binding and the Role of Gln157
journal, June 2012

  • Leiros, Hanna-Kirsti S.; Borra, Pardha S.; Brandsdal, Bjørn Olav
  • Antimicrobial Agents and Chemotherapy, Vol. 56, Issue 8
  • DOI: 10.1128/aac.00448-12

Mutagenesis of Zinc Ligand Residue Cys221 Reveals Plasticity in the IMP-1 Metallo-β-Lactamase Active Site
journal, August 2012

  • Horton, Lori B.; Shanker, Sreejesh; Mikulski, Rose
  • Antimicrobial Agents and Chemotherapy, Vol. 56, Issue 11
  • DOI: 10.1128/aac.01276-12

Structure of In31, a bla IMP -Containing Pseudomonas aeruginosa Integron Phyletically Related to In5, Which Carries an Unusual Array of Gene Cassettes
journal, April 1999

  • Laraki, Nezha; Galleni, Moreno; Thamm, Iris
  • Antimicrobial Agents and Chemotherapy, Vol. 43, Issue 4
  • DOI: 10.1128/aac.43.4.890

Cloning and Characterization of bla VIM , a New Integron-Borne Metallo-β-Lactamase Gene from a Pseudomonas aeruginosa Clinical Isolate
journal, July 1999

  • Lauretti, Laura; Riccio, Maria Letizia; Mazzariol, Annarita
  • Antimicrobial Agents and Chemotherapy, Vol. 43, Issue 7
  • DOI: 10.1128/aac.43.7.1584

Molecular Basis of NDM-1, a New Antibiotic Resistance Determinant
journal, August 2011


New Delhi Metallo-beta-lactamase around the world: An eReview using Google Maps
journal, May 2014


Progress toward inhibitors of metallo-β-lactamases
journal, May 2017

  • McGeary, Ross P.; Tan, Daniel TC; Schenk, Gerhard
  • Future Medicinal Chemistry, Vol. 9, Issue 7
  • DOI: 10.4155/fmc-2017-0007

Works referencing / citing this record:

Investigation of Dipicolinic Acid Isosteres for the Inhibition of Metallo‐β‐Lactamases
journal, May 2019


Genomic and Metagenomic Approaches for Predictive Surveillance of Emerging Pathogens and Antibiotic Resistance
journal, July 2019

  • Sukhum, Kimberley V.; Diorio‐Toth, Luke; Dantas, Gautam
  • Clinical Pharmacology & Therapeutics, Vol. 106, Issue 3
  • DOI: 10.1002/cpt.1535

The role of conserved residues in the catalytic activity of NDM-1: an approach involving site directed mutagenesis and molecular dynamics
journal, January 2019

  • Ali, Abid; Kumar, Rakesh; Iquebal, Mir Asif
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 32
  • DOI: 10.1039/c9cp02734c

Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery
journal, January 2020

  • Morrison, Christine N.; Prosser, Kathleen E.; Stokes, Ryjul W.
  • Chemical Science, Vol. 11, Issue 5
  • DOI: 10.1039/c9sc05586j