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The nature of the nuclear pairing condensates in heavy nuclei, specifically neutron-proton (spin-
triplet), versus identical-particle (spin-singlet) pairing has been an active area of research for quite
some time. In this work, we probe three candidates that should display spin-triplet, spin-singlet,
and mixed-spin pairing. Using theoretical approaches such as the gradient method and symmetry
restoration techniques, we find the ground state of these nuclei in Hartree-Fock-Bogoliubov theory
and compute ground state to ground state pair-transfer amplitudes to neighboring isotopes while
simultaneously projecting to specific particle number and nuclear spin values. We identify specific
reactions for future experimental research that could shed light on spin-triplet and mixed-spin
pairing.

I. INTRODUCTION

The presence of pairing in atomic nuclei has been es-
tablished for more than five decades [1]. Extensive ex-
perimental data on nuclear properties: even-even excita-
tion gaps, binding-energy differences, moments of iner-
tia, onset of deformation, two-nucleon transfer reactions,
etc. can be explained by the presence of neutron-neutron
(nn) and proton-proton (pp) Bardeen-Cooper-Schrieffer-
like (BCS-like) pairing [2–4].

For most known nuclei, with neutron excess, the
ground state consists of nn and pp (j = 0, t = 1 ) pairs
coupled to angular momentum J = 0. For nuclei with
comparable number of neutrons and protons, the nucle-
ons near the Fermi surface should occupy identical or-
bitals and np pairing should be present. Due to the Pauli
exclusion principle, isospin-singlet and isoscalar (t = 0)
is associated with spin-triplet (s = 1) pairing, and vice
versa.

The elusive spin-triplet pairing in nuclei has been both
an experimental and theoretical puzzle over the decades
[5]. Charge independence of the nuclear force should lead
to both (j = 0, t = 1) nn and pp pairing on equal footing
with (j = 0, t = 1) np pairing for nuclei with N ≈ Z.
In addition, the existence of the deuteron as a Jπ = 1+

bound state and low-energy scattering data [6] indicate
that the strength of the interaction is stronger in the
isoscalar channel in comparison with nucleons coupled to
isospin 1. The natural conclusion from this observation is
the expectation to find isospin-singlet, spin-triplet pair-
ing in nuclei, in the form of a quasideuteron condensate.

Neutron-proton pair correlations have been studied by
analyzing the results of large-scale shell-model calcula-
tions [7–15]. The spin-orbit interaction tends to suppress
spin-triplet pairing [14, 16], and nuclear deformation also
plays a competitive role and therefore needs to be treated
in detail [17]. In the case of N ≈ Z, and large atomic
number, if one assumes spherical symmetry, it is reason-
able to expect this type of pairing.

However, in finite systems, pairing can be difficult to
define, and many proxies have been used in the literature
[7–9, 11, 12]. The energy competition between the spin-

singlet and spin-triplet states has also been studied [48].
The most direct measure would be to calculate the pair-
transfer reaction probabilities [3, 4] and here we calculate
the pair-transfer amplitude in the framework of Hartree-
Fock-Bogoliubov (HFB) theory.

The Hartree-Fock-Bogoliubov approach is a versatile
tool that can describe a large number of many-nucleon
problems where pairing is important [18]. The basics of
the HFB formalism are covered in Sec. II. Pairing studies
in nuclear physics have included an isovector pairing field,
an isoscalar pairing field, and coexisting (t = 0, 1) pairing
fields for N = Z, as well as general nucleon numbers [19–
27]. More recently, a mixed-spin pairing ground state
was found to be energetically favorable, in the context of
HFB theory, for the case of heavy nuclei [28, 29] (see also
Ref. [30]).

In this work, we focus our attention on the A ≥ 130
region close to the proton dripline. In Ref. [28] many
candidates where t = 0 pairing could be present were
found in this area. While we are aware that transfer
reaction studies on these nuclei are currently not pos-
sible, this part of the nuclear chart could be accessible
to experimental research via selective studies of fusion-
evaporation reactions. Thus our findings, based on the
analysis of two-nucleon overlaps, can guide the experi-
mental program to those nuclei where the presence of a
spin-triplet pairing phase near the ground state is more
probable.

The first step, then, is finding the ground state for a
given nucleus. In practice, particle number and nuclear
spin are not conserved and need to be restored. Employ-
ing the gradient method developed in Ref. [31] we find
the minimal-energy wave function. This method allows
one to constrain the expectation value of particle num-
ber and the amplitudes of various pairing channels. We
do so to explore how various constraints impact not only
the energy of the ground state but also its composition
in terms of eigenstates of the symmetry operators under
consideration.

Symmetry restoration can be a nontrivial task. In the
past, various formulas based on determinants have been
used, which suffer from a sign ambiguity [32]; and vari-
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ous approximations to overcome it have been employed
[33–36]. Ambiguity-free formulations have been recently
developed [37–39]. We make use of the expressions de-
rived in Ref. [37], which do not have the shortcoming
mentioned.

As found in Refs. [28, 29], there are nuclei where one
type of pairing dominates, like spin-triplet in 132

66 Dy, or
spin-singlet in 132

60 Nd. Also nuclei with coexistence of
both types are present in the nuclear chart, like the so-
called mixed-spin pairing in 132

64 Gd. The distributions of
the states of good quantum numbers for the ground state
of each of these three nuclei are analyzed in Secs. III A,
III B, and III C.

Another area of investigation is how pair-transfer
cross sections (probabilities) compare in ground state to
ground state transitions [40], an observable that could
be considered as the smoking gun to disentangle the two
effects. We compute various transitions from the neigh-
boring isotopes of the three nuclei mentioned, while si-
multaneously carrying out a symmetry projection.

In this paper, our goal is twofold: (i) To confirm the
nature of the ground state condensates survives after
projection and, (ii) For future studies, to find the most
promising pair-transfer reactions for each case. A de-
tailed discussion can be found in Sec. IV, and we draw
our conclusions in the last section.

II. THE HFB FORMALISM

The HFB theory is based on a variational principle
for the energy of the ground state of the system. The
many-body wave function is varied in the space of Slater
determinants of quasiparticles defined by the Bogoliubov
transformation. The “effective” Hamiltonian in this the-
ory consists of one-body and two-body operators, which
we write in second quantization language, in terms of
spin-half particle operators, as

Ĥ =
∑
i,j

tijc
†
i cj +

1

4

∑
i,j,k,l

vijklc
†
i c
†
jclck (1)

The one body potential used in this work is of Wood-
Saxon shape including contributions from spin-orbit in-
teractions,

v(r) =VWSf(r)− (L · S)
VSO
r

df

dr

f(r) =[1 + e(r−R)/a]−1
(2)

and the two body interaction is a contact term for each
of the pairing channels given in Table I,

V (r1, r2) =

6∑
α

vαPL=0Pαδ
3(r1 − r2)

=
1

4

(
3vt + vs + (vt − vs)σ1 · σ2

)
× δ3(r1 − r2)PL=0

(3)

The numerical values for the parameters vs and vt are
300 and 450 MeV respectively, taken from Ref. [29]. The
Bogoliubov transformation from particle to quasiparticle
space is defined as follows:(

β
β†

)
=

(
U† V †

V T UT

)(
c
c†

)
(4)

As a result, the Hamiltonian can be expressed in the new
basis,

Ĥ = H00 + β†H11β +
1

2
β†H20β† + . . . (5)

where the superscripts count the number of creation and
annihilation operators of quasiparticles. A more detailed
explanation of the various terms appearing in Eq. (5) can
be found in Ref. [29].

A. General features of the ground state

The ground state wave function used in this work is
defined as follows:

|Φ〉 =pf(U†V ∗) exp

[
1

2
(V U−1)∗ijc

†
i c
†
j

]
|0〉

(6)

where pf() is the Pfaffian of the matrix, and |0〉 is the
reference vacuum state. The three main isotopes inves-
tigated here share the same reference vacuum state, and
the same quasiparticle basis, which technically is infinite.
Different isotopes occupy different subspaces, and when
their overlap is calculated, an augmented subspace which
encompasses both nuclei is used [41]. The minimization
of the energy is performed through the gradient method
described in Ref. [31] subject to neutron and proton num-
ber constraints. In addition, the various nucleon pairing
channels can be constrained [29], and the constrained
Hamiltonian is

Ĥc = Ĥ −
∑
α

λαQ̂α (7)

The parameters λα are analogous to Lagrange multipli-
ers and the operators Qα are particle number, pairing
amplitudes, etc. In this sense, this formulation employs
the grand canonical ensemble.

As already mentioned in the Introduction, the three
representative isotopes analyzed here are 132

60 Nd, 132
64 Gd

, and 132
66 Dy, taken from Ref. [29]. While we find a dis-

tribution of eigenstates with specific quantum numbers
in the ground state, we enforce this distribution to be
highly peaked at the target isotope.

All the various possible pairing channels are given in
Table I. In Table II we report the correlation energy, the
energy difference between the unpaired ground state, and
the one without any suppression of pairing, found for
each isotope subject to pairing constraints. Since the
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1 2 3 4 5 6

(S, Sz) (0, 0) (0, 0) (0, 0) (1, 1) (1, 0) (1,-1)

(T, Tz) (1, 1) (1, 0) (1, -1) (0, 0) (0, 0) (0, 0)

TABLE I. The 6 spin-isospin pairing channels

132
66 Dy 132

64 Gd 132
60 Nd

(spin-triplet) (mixed-spin) (spin-singlet)

No Constraint 11.315 7.478 8.037

No S = 0 11.315 6.299 1.630

No S = 1 4.853 4.630 8.035

TABLE II. The correlation energy Ecorr[MeV]. This quantity
is defined as the difference in HFB ground state binding en-
ergy between the unpaired nucleus and the one subject to
pairing constraints (or completely unconstrained).

present calculations are at the mean-field level, the re-
sults are to be understood more as a qualitative rather
than quantitative representation of the “physical” ground
state. As can be seen from Table II, the unconstrained
ground state and the one found by removing spin-singlet
pairing are nearly degenerate in energy for 132

66 Dy. This
is an indication of this nucleus exhibiting mainly spin-
triplet pairings. The situation in the case of 132

64 Gd is
quite different. Neither pairing channel is suppressed in
the ground state, and both pair constrained states have
very similar values of correlation energy. We, thus, can
expect 132

64 Gd to be of spin-mixed pairing nature. The
last isotope, 132

60 Nd, is analogous to 132
66 Dy, but for spin-

singlet pairing. Note that when we refer to a nucleus
as exhibiting, say, spin-singlet pairing, we merely mean
that the channel is dominant (not that it is the only one
present).

B. The eigenbasis

The basis chosen is block diagonal in orbital angular
momentum L̂ (multiple l values are present), and diag-

onal in isospin T̂ , and spin Ŝ. The symmetries we are
studying are particle number Â, more specifically neu-
tron and proton number, and nuclear spin (Ĵ = L̂+ Ŝ).
The respective operators are represented by matrices in
this basis,

Â(LTS) =INL
⊗ I2 ⊗ I2

T̂ (LTS) =INL
⊗ J1/2 ⊗ I2

Ĵ (LTS)
z ={⊕JLi

} ⊗ I2 ⊗ I2 + INL
⊗ I2 ⊗ J1/2

NL =
∑
i

(2Li + 1)

(8)

where JD is the angular momentum operator in the irre-
ducible diagonal representation in which D is the max-
imal eigenvalue of Ĵz [42]. INL

is the NL dimensional
identity matrix.

III. SYMMETRY RESTORATION

Following previous work, we find the ground state
through energy minimization and then perform sym-
metry projection, also called projection after variation
(PAV) [40, 43, 44]. The energy minimization procedure

does not respect either Â or Ĵ conservation, and these
symmetries are restored by projecting out the eigenstate
composition of the wave-function found.

The probability for a quantum number K to be present
in the wave-function |Φ〉 is given by the formula,

〈Φ|P̂K |Φ〉 =
dK
Ω0

∫
dΩ PKII (Ω) 〈Φ|P(Ω)|Φ′〉 (9)

where PKII (Ω) is a diagonal matrix element of the sym-
metry group P in representation of dimensionality dK ,
and Ω0 is the volume integral of the group. The overlap
〈Φ|P(Ω)|Φ′〉 is calculated based on the expressions from
Ref. [37]. The numerical implementation of the Pfaf-
fian is based on the Parlett-Reid algorithm as shown in
Ref. [45].

A. Particle-number projection

In the case of simultaneous projection of proton and
neutron number, the projection operator is,

P̂
(LTS)
NZ (N0, Z0) =

∫ 2π

0

dϕN
2π

e−iN0ϕN

∫ 2π

0

dϕZ
2π

e−iZ0ϕZ

× eiR(ϕN ,ϕZ)

R(ϕN , ϕZ) =INL
⊗

(
ϕN 0

0 ϕZ

)
⊗ I2

(10)

As the plot in Fig. 1 shows, the presence of only spin-
triplet pairing forces the probability distributions for pro-
tons and neutrons to be strongly coupled (the distribu-
tion is perpendicular to the A = 132 line). If only spin-
singlet pairing is present, the distributions are decoupled
and there is a checkerboard pattern centered at the tar-
get isotope. Mixed-spin pairing is a hybrid of the two
previous configurations. Note that for each of the three
nuclei under study we see contributions coming from sev-
eral even-even and odd-odd nuclides (this is true also for
132
60 Nd, where the odd-odd contributions are tiny but their
cumulative contribution to I0 = 1 is noticeable as shown
in the following sections).

To have a better understanding of the pattern ob-
served, it is instructive to perform symmetry restoration
on the mixed-spin isotope, by constraining one type of
pairing at a time, to see how the ground state configu-
ration looks in terms of neutron and proton number dis-
tributions. As displayed in Fig. 2, the pattern found in
Fig. 1 persists; spin-triplet pairing symmetrizes the dis-
tributions while spin-singlet completely decouples them.
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FIG. 1. Two-dimensional probability distributions, Eq. (9)
with the projection operator in Eq. (10). Dotted line repre-
sents A = 132.

As a check, we have carried out further calculations,
where we remove spin-singlet pairing from the ground
state of 132

66 Dy: there was no significant change in the
particle number distribution. The same turned out to be
the case when removing spin-triplet pairing for 132

60 Nd. To
avoid any confusion when reading our two-dimensional
distribution plots, we emphasize here that projection to
only integer particle number was performed, since N and
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(a) No spin-singlet pairing
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0.000
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0.075

(b) No spin-triplet pairing

FIG. 2. Two-dimensional probability distribution for 132
64 Gd

subject to pairing constraints. Dotted line represents A =
132.

Z are treated as integers throughout this work.

B. Angular momentum projection (nuclear spin)

The rotational group is parametrized in terms of the
three Euler angles Ω = (α, β, γ) and the symmetry group
under consideration is SU(2). The respective expression

for Ĵ projection is [18]

P̂
(LTS)
J (I0,m

′,m) =
2I0 + 1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin(β)

×
∫ 2π

0

dγei(m
′α+mγ)d

(I0)
m′,m(β)eiαĴ

(LTS)
z

× eiβĴ
(LTS)
y eiγĴ

(LTS)
z

(11)

where d
(I0)
m′,m(β) = 〈I0,m′| exp[iβĴy]|I0,m〉 is the Wigner

matrix representing the rotation matrix element around
the y axis in the Ĵz basis [46]. We used a slight mod-
ification of Eq. (11), where the range of integration for
γ is twice the full rotation, and the projection operator
was normalized accordingly. The reason for this change
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FIG. 3. I0 probability distribution, Eq. (9), with the projec-
tion operator in Eq. (11), for 132

66 Dy (black circles), 132
64 Gd (red

stars), and 132
60 Nd (blue diamonds).

is to allow for the simultaneous projection of both half
and full angular momentum values. If the number of
quasiparticles is even, only integer values of I0 are to
be expected, but for odd-number nuclei, spin-half values
might be present.

Figure 3 depicts the I0 probability distribution for all
three isotopes. In the case of spin-singlet pairing (132

60 Nd)
I0 = 0 is the dominant state, and in the case of spin-
triplet pairing (132

66 Dy), there is a spread peaked at low
values of I0. Interestingly, the mixed-spin paired isotope
resembles more the spin-triplet distribution. The proba-
bility distributions for I0 subject to all the pairing con-
straints for the mixed-spin pairing isotope are depicted
in Fig. 4. A rather intriguing pattern emerges from this
figure; when only spin-singlet pairing is present, I0 = 0 is
the only value present, and when only spin-triplet pairing
is present, there is a wide spread of possible I0 values.

0 5 10 15 20 25
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0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty No Constraint

No S=0

No S=1

FIG. 4. I0 probability distribution, as in Fig. 3, for 132
64 Gd

subject to no constraint (red stars), no spin-singlet (black
circles), and no spin-triplet (blue diamonds) pairing.

C. Particle number and angular momentum

To identify what fraction of the ground state has the
“right” quantum numbers (N0, Z0, I0), a simultaneous
projection is required:

P̂
(LTS)
NZJ (N0, Z0, I0) = P̂

(LTS)
NZ (N0, Z0)

I0∑
m=−I0

P̂
(LTS)
J (I0,m,m).

(12)

In Fig. 5 we plot the particle-number probability distri-
butions for the three isotopes after we have projected to
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FIG. 5. Two dimensional probability distributions for the
three isotopes for I0 = 0, Eq. (9) with the projection operator
in Eq. (12), without any constraint on pairing. Dotted line
represents A = 132.
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I0 = 0 chosen to represent the ground state. As can be
seen from the plot, for 132

66 Dy and 132
64 Gd there is rather a

sparse probability distribution which agrees with the re-
sult of Fig. 3 which shows that I0 = 0 is a very small part
of the wave function. The distribution for 132

60 Nd is almost
the same as in Fig. 1, as 90 % of the wave function has
I0 = 0. A rather interesting feature emerges from this
figure; there are no odd-odd nuclei making up the distri-
bution for I0 = 0, despite the fact that they were present
present in each of the full HFB ground states (Fig. 1).
To further understand this situation, we also carried out
separate calculations, projecting to I0 = 1 and exam-
ining the particle-number distribution for each isotope.
The result of the projection is depicted in Fig. 6. We
(correspondingly) find that only odd-odd nuclei make up
the I0 = 1 distributions.

Figure 7 depicts the I0 distribution for each isotope
after the neutron and proton particle numbers have been
projected to the target values. By comparing with Fig. 3,
we notice that 132

60 Nd has only I0 = 0 for the target parti-
cle numbers, while the two other isotopes have the same
qualitative shape as in the previous plot.

IV. PAIR TRANSFER

A. Wave-function overlap and particle creation
operators

Apart from analyzing the eigen-composition of the
HFB ground state, we are also interested in applying
symmetry restoration to ground-state to ground-state
pair-transfer reactions. While this overlap has been
treated extensively in various approximations [40] [47],
our focus here is in finding the most probable pair-
transfer reaction for nuclei where spin-triplet pairing
could be present. In particular, we study all the overlaps
between the three nuclei under study and the neighbor-
ing isotopes that can be reached by the addition of two
nucleons. Instead of assuming that the initial and final
nuclei are the same, as is sometimes done, we explicitly
include the appropriate HFB nuclei. The expressions for
the overlap with inclusion of addition or removal of par-
ticles are derived from Ref. [37],

〈Φ|P(Ω)c†q1c
†
q2 |Φ

′〉 =
(−1)n(n−1)/2

〈Φ|Φ′〉

× pf

 V tU V tP ∗qt V tP ∗V ′∗

−qP †V 0 0

−V ′†P † V 0 U ′†V ′∗

 (13)

where the(U , V ) matrices, describing the wave-function
in Eq. (6), have dimensions (2n, 2n), q is a (2, 2n) matrix
whose rows are the vector representations of the particles
creation operators in the wave-function basis. Note that,
〈Φ|P(Ω)c†q1c

†
q2 |Φ

′〉 = 〈Φ′|cq1cq2P†(Ω)|Φ〉∗, so the expres-
sion provided can be used for both pair addition or re-
moval.
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(a) 132
66 Dy
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60 Nd

FIG. 6. Two-dimensional probability distributions for the
three isotopes for I0 = 1, Eq. (9) with the projection operator
in Eq. (12), without any constraint on pairing. Dotted line
represents A = 132.

B. Creation-operator representation

The projection operator and its representation has
been dealt with in Sec. II B. Here, we describe how
to construct the creation operators of specific quantum
numbers (I0,mI ,mT ).

We start with a basis diagonal in (Ĵ2 Ĵz), where we

assume that also (Ĵx, Ĵy) are in their standard repre-
sentation [42]. A creation operator of specific (I0, mI)
quantum numbers is represented by ei, the ith column
of the identity matrix I, which is also an eigenvector of
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FIG. 7. I0 probability distribution for 132
66 Dy (black circles),

132
64 Gd (red stars), and 132

60 Nd (blue diamonds). Each isotope
has been projected to the respective target neutron and pro-
ton numbers.

Ĵz,

q = ei, Ĵ
2ei = I0(I0 + 1)ei, Ĵzei = mIei (14)

Given that (Ĵ2, Ĵz) commute, the transformation from

the (L̂, Ŝ) basis to the Ĵz basis is achieved through con-
structing a matrix pencil [49]. An additional similar-

ity transformation which sets (Ĵx, Ĵy) in their standard

forms and leaves (Ĵ2, Ĵz) invariant is required. Let us
denote the successive application of these two transfor-
mations as Q:

J (LS)
z = Q J (j,mj)

z Q† (15)

And, in the basis of the HFB wavefunction,

{⊕JLi} ⊗ I2 + INL
⊗ J1/2 = J (LS)

z (16)

The order of the operators in the HFB basis is orbital an-
gular momentum—isospin—spin (LTS), and we need to
have isospin—orbital angular momentum—spin (TLS).
The order reshuffling can be performed with the use of
permutation matrices Sp,r =

∑p
i=1 e

t
i ⊗ Ir ⊗ ei [50]. The

main property of these matrices is to change the order of
a Kronecker product. The complete reordering between
the two bases is performed,

J (LTS)
z ={⊕JLi

} ⊗ I2 ⊗ I2 + INL
⊗ I2 ⊗ J1/2

=SNL,4

[
I2 ⊗

(
I2 ⊗ {⊕JLi

}+ J1/2 ⊗ INL

) ]
StNL,4

=SNL,4

[
I2 ⊗

(
S2,NL

J (LS)
z St2,NL

) ]
StNL,4

(17)

As the careful reader might notice, two successive permu-
tations are performed, the first one is (LTS −→ TSL)
and the second one is (TSL −→ TLS). This leads us to

connect the basis used to find the HFB ground state with
a basis in which particle creation or annihilation opera-
tors with specific nuclear spin quantum numbers can be
easily expressed in matrix notation.

q(HFB basis) = SNL,4

[
I2 ⊗

(
S2,NL

Q ei Q
† St2,NL

)]
StNL,4

(18)

C. Pair-transfer amplitude

To estimate which pair-transfer reaction is more prob-
able, for each of the three nuclei studied so far, we define
the pair-transfer amplitude rate as follows:

A(Jp)
Φi,Φf

(Ii, If ) = | 〈Φf |P̂(If , Jp)|Φi〉
NiNf

|

P̂(If , Jp) =

Jp∑
mjp=−Jp

P̂J(If )ĉ†(Jp,−mjp )ĉ†(Jp,mjp )

Ni =

√
〈Φi|P̂J(Ii)|Φi〉; Nf =

√
〈Φf |P̂J(If )|Φf 〉

(19)

where (Ii, If ) are the nuclear spin values of the ground
states of the two nuclei. For isotopes with even number of
neutrons and protons, we assume this value to be Ii = 0,
If = 0 and for isotopes with odd number of neutrons
and odd number of protons we take it to be Ii = 1. Jp
refers to the total angular momentum of each particle in
the pair, as explained in detail in Sec. IV B. We assume
that both particles in the pair have the same angular
momentum and opposite projection in the ẑ direction.
The symmetry projection operator acts to the left on
the final state, which has been studied in detail in the
previous sections.

We create single-particle states with quantum numbers
(n, l, Jp, mjp), where l takes the values (0, 2, 4, 5)
[with n respectively (0, 1, 2, 3)] [29, 30]. For instance,
if Jp = 1/2, the orbital angular momentum is l = 0
and n = 0. In what follows, we quote the total angular
momentum value Jp as shorthand.

In Eq. (19) we did not include the simultaneous
(N,Z, J) projection since it is computationally expen-
sive, but we computed it for (N,Z, Jp = 1/2) and the
qualitative trends do not change.

There are various definitions of the transfer amplitude
in the literature [40], and given that the wave function
we use is not normalized to 1, we need to divide by the
individual norms of initial and final nuclei. In addition,
we are interested only in the fraction of the wave-function
with the right ground state quantum numbers, so we nor-
malize by the symmetry projected initial and final states.

Let us turn to a detailed discussion of Fig. 8. For 132
66 Dy

[Fig. 8(a)], the presence of spin-triplet pairing is in agree-
ment with the addition of an np pair to the lighter iso-
topes being highly more likely than that of nn or pp pairs
(which have equal transfer amplitudes). Thus, this is an
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FIG. 8. Transfer amplitudes for pair addition processes. Blue
circles correspond to pp transfer; red squares correspond to nn
transfer, and green triangles correspond to np pair transfer.

additional piece of evidence on spin-triplet np pairing,
since 130

65 Tb→ 132
66 Dy is the most likely reaction to occur.

Since 132
66 Dy is an N = Z nucleus, if the np pairing was

spin-singlet in nature, then the np pair transfer would
have had the same amplitude as nn and pp pairs. Now

turn to 132
64 Gd [Fig. 8(b)]: the situation is rather different,

since there are more neutrons than protons. Since here
nn and np transfer amplitudes are both nonzero, we see
the presence of both spin-triplet and spin-singlet pairing.
As it so happens, the spin-triplet pairing is responsible
for the np amplitude being (somewhat) larger than the
nn one. Finally, in 132

60 Nd [Fig. 8(c)] where the excess
of neutrons is sizable, the situation is reversed. We do
not find any significant amplitude for np or pp pairs: this
nucleus is characterized by spin-singlet pairing, with the
most likely reaction being 130

60 Nd→ 132
60 Nd.

V. CONCLUSIONS

Symmetry restoration allows us to discern the parti-
cle number and nuclear spin eigenstate composition of
the ground state wave function found in HFB theory.
By mapping out the probability distributions for each
of these quantities for three isotopes, 132

66 Dy, 132
64 Gd, and

132
60 Nd we were able to study how different types of spin
pairings shape the eigen-composition of the ground state.
We were able to find specific patterns in the probabil-
ity distributions that can be used as theoretical qualita-
tive indications of spin-triplet, spin-singlet or mixed-spin
pairing. In the case of spin-triplet pairing, the proton
and neutron number distributions seem rather symmet-
ric. In the spin-singlet case there is checkered pattern,
and the mixed-spin pairing is in between.

The second part of this work focuses on calculating
ground state to ground state pair-transfer amplitudes
in order to find the most likely candidate reactions for
probing spin-triplet and mixed-spin pairing in heavy nu-
clei. We find 130

65 Tb→ 132
66 Dy to be very likely, in good

agreement with the spin-triplet nature of Dy. Similarly,
130
60 Nd→ 132

60 Nd is the most probable transition, which
is another indication of spin-singlet pairing in this nu-
cleus. The mixed-spin pairing case is more intricate,
130
63 Eu→ 132

64 Gd is the dominant reaction, which is an in-
dication of spin-triplet pairing being present, but also
130
64 Gd→ 132

64 Gd is likely to occur, which coincides with
spin-singlet pairing.

We are hopeful to see future experiments that can ver-
ify our predictions in this region of the nuclear chart.
In addition, in a future work, the framework developed
and tested here, will be applied to lighter isotopes, where
mixed-spin pairing might be present, and which could be
within reach of current experiments.
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