DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hierarchical visualization of materials space with graph convolutional neural networks

Abstract

The combination of high throughput computation and machine learning has led to a new paradigm in materials design by allowing for the direct screening of vast portions of structural, chemical, and property spaces. The use of these powerful techniques leads to the generation of enormous amounts of data, which in turn calls for new techniques to efficiently explore and visualize the materials space to help identify underlying patterns. In this work, we develop a unified framework to hierarchically visualize the compositional and structural similarities between materials in an arbitrary material space with representations learned from different layers of graph convolutional neural networks. We demonstrate the potential for such a visualization approach by showing that patterns emerge automatically that reflect similarities at different scales in three representative classes of materials: perovskites, elemental boron, and general inorganic crystals, covering material spaces of different compositions, structures, and both. For perovskites, elemental similarities are learned that reflects multiple aspects of atom properties. For elemental boron, structural motifs emerge automatically showing characteristic boron local environments. For inorganic crystals, the similarity and stability of local coordination environments are shown combining different center and neighbor atoms. The method could help transition to a data-centered exploration of materialsmore » space in automated materials design.« less

Authors:
 [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1543881
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 149; Journal Issue: 17; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Physics

Citation Formats

Xie, Tian, and Grossman, Jeffrey C. Hierarchical visualization of materials space with graph convolutional neural networks. United States: N. p., 2018. Web. doi:10.1063/1.5047803.
Xie, Tian, & Grossman, Jeffrey C. Hierarchical visualization of materials space with graph convolutional neural networks. United States. https://doi.org/10.1063/1.5047803
Xie, Tian, and Grossman, Jeffrey C. Tue . "Hierarchical visualization of materials space with graph convolutional neural networks". United States. https://doi.org/10.1063/1.5047803. https://www.osti.gov/servlets/purl/1543881.
@article{osti_1543881,
title = {Hierarchical visualization of materials space with graph convolutional neural networks},
author = {Xie, Tian and Grossman, Jeffrey C.},
abstractNote = {The combination of high throughput computation and machine learning has led to a new paradigm in materials design by allowing for the direct screening of vast portions of structural, chemical, and property spaces. The use of these powerful techniques leads to the generation of enormous amounts of data, which in turn calls for new techniques to efficiently explore and visualize the materials space to help identify underlying patterns. In this work, we develop a unified framework to hierarchically visualize the compositional and structural similarities between materials in an arbitrary material space with representations learned from different layers of graph convolutional neural networks. We demonstrate the potential for such a visualization approach by showing that patterns emerge automatically that reflect similarities at different scales in three representative classes of materials: perovskites, elemental boron, and general inorganic crystals, covering material spaces of different compositions, structures, and both. For perovskites, elemental similarities are learned that reflects multiple aspects of atom properties. For elemental boron, structural motifs emerge automatically showing characteristic boron local environments. For inorganic crystals, the similarity and stability of local coordination environments are shown combining different center and neighbor atoms. The method could help transition to a data-centered exploration of materials space in automated materials design.},
doi = {10.1063/1.5047803},
journal = {Journal of Chemical Physics},
number = 17,
volume = 149,
place = {United States},
year = {Tue Nov 06 00:00:00 EST 2018},
month = {Tue Nov 06 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 41 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: The structure of the crystal graph convolutional neural networks.

Save / Share:

Works referenced in this record:

Learning atoms for materials discovery
journal, June 2018

  • Zhou, Quan; Tang, Peizhe; Liu, Shenxiu
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 28
  • DOI: 10.1073/pnas.1801181115

Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale
journal, August 2011


Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene
journal, March 2013

  • Butler, Sheneve Z.; Hollen, Shawna M.; Cao, Linyou
  • ACS Nano, Vol. 7, Issue 4, p. 2898-2926
  • DOI: 10.1021/nn400280c

How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
journal, May 2014


Machine learning for the structure–energy–property landscapes of molecular crystals
journal, January 2018

  • Musil, Félix; De, Sandip; Yang, Jack
  • Chemical Science, Vol. 9, Issue 5
  • DOI: 10.1039/c7sc04665k

Neural network models of potential energy surfaces
journal, September 1995

  • Blank, Thomas B.; Brown, Steven D.; Calhoun, August W.
  • The Journal of Chemical Physics, Vol. 103, Issue 10
  • DOI: 10.1063/1.469597

Systematic comparison of crystalline and amorphous phases: Charting the landscape of water structures and transformations
journal, March 2015

  • Pietrucci, Fabio; Martoňák, Roman
  • The Journal of Chemical Physics, Vol. 142, Issue 10
  • DOI: 10.1063/1.4914138

Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization
journal, November 2015


Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap
journal, December 2011

  • Spiwok, Vojtěch; Králová, Blanka
  • The Journal of Chemical Physics, Vol. 135, Issue 22
  • DOI: 10.1063/1.3660208

Observation of an all-boron fullerene
journal, July 2014

  • Zhai, Hua-Jin; Zhao, Ya-Fan; Li, Wei-Li
  • Nature Chemistry, Vol. 6, Issue 8
  • DOI: 10.1038/nchem.1999

The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

Comparing molecules and solids across structural and alchemical space
journal, January 2016

  • De, Sandip; Bartók, Albert P.; Csányi, Gábor
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 20
  • DOI: 10.1039/c6cp00415f

MoleculeNet: a benchmark for molecular machine learning
journal, January 2018

  • Wu, Zhenqin; Ramsundar, Bharath; Feinberg, Evan N.
  • Chemical Science, Vol. 9, Issue 2
  • DOI: 10.1039/c7sc02664a

Discovering Mountain Passes via Torchlight: Methods for the Definition of Reaction Coordinates and Pathways in Complex Macromolecular Reactions
journal, April 2013


Big Data of Materials Science: Critical Role of the Descriptor
journal, March 2015


Graphene-Like Two-Dimensional Materials
journal, January 2013

  • Xu, Mingsheng; Liang, Tao; Shi, Minmin
  • Chemical Reviews, Vol. 113, Issue 5, p. 3766-3798
  • DOI: 10.1021/cr300263a

SchNet – A deep learning architecture for molecules and materials
journal, June 2018

  • Schütt, K. T.; Sauceda, H. E.; Kindermans, P. -J.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019779

Machine Learning Energies of 2 Million Elpasolite ( A B C 2 D 6 ) Crystals
journal, September 2016


The Inorganic Crystal Structure Database (ICSD)—Present and Future
journal, January 2004


β-Rhombohedral Boron: At the Crossroads of the Chemistry of Boron and the Physics of Frustration
journal, March 2013

  • Ogitsu, Tadashi; Schwegler, Eric; Galli, Giulia
  • Chemical Reviews, Vol. 113, Issue 5
  • DOI: 10.1021/cr300356t

Predicting the Thermodynamic Stability of Solids Combining Density Functional Theory and Machine Learning
journal, May 2017


Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization
journal, November 2017

  • Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav
  • Frontiers in Materials, Vol. 4
  • DOI: 10.3389/fmats.2017.00034

Review of recent progress in chemical stability of perovskite solar cells
journal, December 2014

  • Niu, Guangda; Guo, Xudong; Wang, Liduo
  • Journal of Materials Chemistry A, Vol. 3, Issue 17, p. 8970-8980
  • DOI: 10.1039/c4ta04994b

Atom-centered symmetry functions for constructing high-dimensional neural network potentials
journal, February 2011

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 134, Issue 7
  • DOI: 10.1063/1.3553717

New cubic perovskites for one- and two-photon water splitting using the computational materials repository
journal, January 2012

  • Castelli, Ivano E.; Landis, David D.; Thygesen, Kristian S.
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22341d

High-throughput screening of solid-state catalyst libraries
journal, July 1998

  • Senkan, Selim M.
  • Nature, Vol. 394, Issue 6691
  • DOI: 10.1038/28575

Molecular graph convolutions: moving beyond fingerprints
journal, August 2016

  • Kearnes, Steven; McCloskey, Kevin; Berndl, Marc
  • Journal of Computer-Aided Molecular Design, Vol. 30, Issue 8
  • DOI: 10.1007/s10822-016-9938-8

On representing chemical environments
journal, May 2013


Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

Alchemical and structural distribution based representation for universal quantum machine learning
journal, June 2018

  • Faber, Felix A.; Christensen, Anders S.; Huang, Bing
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5020710

Computational screening of perovskite metal oxides for optimal solar light capture
journal, January 2012

  • Castelli, Ivano E.; Olsen, Thomas; Datta, Soumendu
  • Energy Environ. Sci., Vol. 5, Issue 2
  • DOI: 10.1039/c1ee02717d

Data-Driven Learning of Total and Local Energies in Elemental Boron
journal, April 2018


Simplifying the representation of complex free-energy landscapes using sketch-map
journal, July 2011

  • Ceriotti, Michele; Tribello, Gareth A.; Parrinello, Michele
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 32
  • DOI: 10.1073/pnas.1108486108

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction
journal, June 2006

  • Das, P.; Moll, M.; Stamati, H.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 26
  • DOI: 10.1073/pnas.0603553103

Crystal structure representations for machine learning models of formation energies
journal, April 2015

  • Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24917

Mapping uncharted territory in ice from zeolite networks to ice structures
journal, June 2018


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Study of the hydrogen solid solution in thulium
journal, January 1979


Combinatorial and High-Throughput Screening of Materials Libraries: Review of State of the Art
journal, August 2011

  • Potyrailo, Radislav; Rajan, Krishna; Stoewe, Klaus
  • ACS Combinatorial Science, Vol. 13, Issue 6
  • DOI: 10.1021/co200007w

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


Metrics for measuring distances in configuration spaces
journal, November 2013

  • Sadeghi, Ali; Ghasemi, S. Alireza; Schaefer, Bastian
  • The Journal of Chemical Physics, Vol. 139, Issue 18
  • DOI: 10.1063/1.4828704

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach
journal, August 2016

  • Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.
  • Nature Materials, Vol. 15, Issue 10
  • DOI: 10.1038/nmat4717

Machine Learning Force Fields: Construction, Validation, and Outlook
journal, December 2016


A general-purpose machine learning framework for predicting properties of inorganic materials
journal, August 2016


Universal fragment descriptors for predicting properties of inorganic crystals
journal, June 2017

  • Isayev, Olexandr; Oses, Corey; Toher, Cormac
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15679

Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory
journal, June 2010

  • Hautier, Geoffroy; Fischer, Christopher C.; Jain, Anubhav
  • Chemistry of Materials, Vol. 22, Issue 12
  • DOI: 10.1021/cm100795d

Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints
journal, January 2015

  • Isayev, Olexandr; Fourches, Denis; Muratov, Eugene N.
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm503507h

Efficient nonparametric n -body force fields from machine learning
journal, May 2018


Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells
journal, October 2013

  • Snaith, Henry J.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 21, p. 3623-3630
  • DOI: 10.1021/jz4020162

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


Study of the hydrogen solid solution in thulium
journal, December 1978


Data-mined similarity function between material compositions
journal, December 2013


Data-Driven Learning of Total and Local Energies in Elemental Boron
journal, April 2018


Works referencing / citing this record:

A Critical Review of Machine Learning of Energy Materials
journal, January 2020


Making machine learning a useful tool in the accelerated discovery of transition metal complexes
journal, July 2019

  • Kulik, Heather J.
  • WIREs Computational Molecular Science, Vol. 10, Issue 1
  • DOI: 10.1002/wcms.1439

Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
journal, June 2019


Recent advances and applications of machine learning in solid-state materials science
journal, August 2019

  • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0221-0

A quantitative uncertainty metric controls error in neural network-driven chemical discovery
journal, January 2019

  • Janet, Jon Paul; Duan, Chenru; Yang, Tzuhsiung
  • Chemical Science, Vol. 10, Issue 34
  • DOI: 10.1039/c9sc02298h

Predicting charge density distribution of materials using a local-environment-based graph convolutional network
journal, November 2019


Graph Dynamical Networks for Unsupervised Learning of Atomic Scale Dynamics in Materials
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.