DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microwave-Assisted Synthesis of Classically Immiscible Ag–Ir Alloy Nanoparticle Catalysts

Abstract

In this work, we present the synthesis of Ag–Ir alloys in the form of solid-solution nanoparticles (NPs). Ag and Ir are classically immiscible in the bulk and therefore the physical properties of Ag–Ir alloys are unknown. A convenient microwave-assisted, solution-phase method that employs readily available Ag(NO3) and IrCl3 precursors enables the preparation of small (2.5–5.5 nm) Ag–IrNPs with alloyed structures. Ag$$x$$Ir(100–$$x$$)NPs can be obtained by this method between $$x$$ = 6–31. The Ag–IrNPs resist dealloying upon heating up to 300 °C. Ir-rich Ag–IrNPs dispersed on amorphous silica are significantly more active gas-phase alkene hydrogenation catalysts than pure IrNPs. Density functional theory (DFT) and theoretical modeling studies reveal that the Ag–IrNPs—which are consistently larger than monometallic IrNPs prepared under the same conditions—have comparatively fewer strong H-binding edge sites. This promotes faster H atom transfer to coadsorbed alkenes. Ag–IrNPs supported on amorphous Co3O4 show a linear composition dependence in the selective hydrogenation of C$$=$$O versus C$$=$$C bonds: more Ag-rich Ag–IrNPs are more selective toward C$$=$$O hydrogenation of the α,β-unsaturated aldehyde crotonaldehyde, yielding the industrially desirable crotyl alcohol. Furthermore, deposition of Ag–IrNPs inside Co3O4 mesopores results in an additional ~56% selectivity enhancement.

Authors:
 [1];  [1]; ORCiD logo [2]; ORCiD logo [3];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Texas, Austin, TX (United States). Dept. of Chemistry
  2. Univ. of Texas, Austin, TX (United States). Texas Materials Inst.
  3. Univ. of Texas, Austin, TX (United States). Dept. of Chemistry; Nanjing Univ., Nanjing, Jiangsu (China). School of Environment
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE
OSTI Identifier:
1543703
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 8; Journal Issue: 12; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; chemistry; metallic nanoparticles; alloy nanoparticles; microwave synthesis; heterogeneous catalysis; crotonaldehyde hydrogenation; silver; iridium

Citation Formats

Guo, Hongyu, Li, Hao, Jarvis, Karalee, Wan, Haiqin, Kunal, Pranaw, Dunning, Samuel G., Liu, Yulu, Henkelman, Graeme, and Humphrey, Simon M. Microwave-Assisted Synthesis of Classically Immiscible Ag–Ir Alloy Nanoparticle Catalysts. United States: N. p., 2018. Web. doi:10.1021/acscatal.8b02103.
Guo, Hongyu, Li, Hao, Jarvis, Karalee, Wan, Haiqin, Kunal, Pranaw, Dunning, Samuel G., Liu, Yulu, Henkelman, Graeme, & Humphrey, Simon M. Microwave-Assisted Synthesis of Classically Immiscible Ag–Ir Alloy Nanoparticle Catalysts. United States. https://doi.org/10.1021/acscatal.8b02103
Guo, Hongyu, Li, Hao, Jarvis, Karalee, Wan, Haiqin, Kunal, Pranaw, Dunning, Samuel G., Liu, Yulu, Henkelman, Graeme, and Humphrey, Simon M. Wed . "Microwave-Assisted Synthesis of Classically Immiscible Ag–Ir Alloy Nanoparticle Catalysts". United States. https://doi.org/10.1021/acscatal.8b02103. https://www.osti.gov/servlets/purl/1543703.
@article{osti_1543703,
title = {Microwave-Assisted Synthesis of Classically Immiscible Ag–Ir Alloy Nanoparticle Catalysts},
author = {Guo, Hongyu and Li, Hao and Jarvis, Karalee and Wan, Haiqin and Kunal, Pranaw and Dunning, Samuel G. and Liu, Yulu and Henkelman, Graeme and Humphrey, Simon M.},
abstractNote = {In this work, we present the synthesis of Ag–Ir alloys in the form of solid-solution nanoparticles (NPs). Ag and Ir are classically immiscible in the bulk and therefore the physical properties of Ag–Ir alloys are unknown. A convenient microwave-assisted, solution-phase method that employs readily available Ag(NO3) and IrCl3 precursors enables the preparation of small (2.5–5.5 nm) Ag–IrNPs with alloyed structures. Ag$x$Ir(100–$x$)NPs can be obtained by this method between $x$ = 6–31. The Ag–IrNPs resist dealloying upon heating up to 300 °C. Ir-rich Ag–IrNPs dispersed on amorphous silica are significantly more active gas-phase alkene hydrogenation catalysts than pure IrNPs. Density functional theory (DFT) and theoretical modeling studies reveal that the Ag–IrNPs—which are consistently larger than monometallic IrNPs prepared under the same conditions—have comparatively fewer strong H-binding edge sites. This promotes faster H atom transfer to coadsorbed alkenes. Ag–IrNPs supported on amorphous Co3O4 show a linear composition dependence in the selective hydrogenation of C$=$O versus C$=$C bonds: more Ag-rich Ag–IrNPs are more selective toward C$=$O hydrogenation of the α,β-unsaturated aldehyde crotonaldehyde, yielding the industrially desirable crotyl alcohol. Furthermore, deposition of Ag–IrNPs inside Co3O4 mesopores results in an additional ~56% selectivity enhancement.},
doi = {10.1021/acscatal.8b02103},
journal = {ACS Catalysis},
number = 12,
volume = 8,
place = {United States},
year = {Wed Oct 03 00:00:00 EDT 2018},
month = {Wed Oct 03 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (A) PXRD patterns for Ag, Ir and AgxIr(100‒x)NPs of different compositions; the corresponding theoretical reflection positions for Ag (JCPDS card # 01-087-0597) and IrNPs (JCPDS card # 01-087-0715) are also shown for reference. Inset: magnification of the (111) and (200) reflections. (B-G) TEM images for pure Ir NPsmore » and AgxIr(100‒x)NPs with different compositions; insets: size distribution histographs. Scale bars equal to 50 nm.« less

Save / Share:

Works referenced in this record:

Applied Catalysis: A Predictive Socioeconomic History
journal, May 2009


Promotion of Iridium-Catalyzed Methanol Carbonylation:  Mechanistic Studies of the Cativa Process
journal, March 2004

  • Haynes, Anthony; Maitlis, Peter M.; Morris, George E.
  • Journal of the American Chemical Society, Vol. 126, Issue 9
  • DOI: 10.1021/ja039464y

New acetyls techonologies from BP chemicals
book, January 1999

  • Howard, Mark J.; Sunley, Glenn J.; Poole, Andrew D.
  • Science and Technology in Catalysis 1998, Proceedings of the Third Tokyo Conference on Advanced Catalytic Science and Technology
  • DOI: 10.1016/S0167-2991(99)80045-7

High productivity methanol carbonylation catalysis using iridium
journal, May 2000


P-145: A Three-Spectrum White Organic Light Emitting Diode Base on a New Red Organometallic Iridium Complexes
journal, January 2005

  • Shieh, Tien-shou; Yeh, Shu-Tang; Chu, Miao-Tsai
  • SID Symposium Digest of Technical Papers, Vol. 36, Issue 1
  • DOI: 10.1889/1.2036581

Positive effect of coexisting SO2 on the activity of supported iridium catalysts for NO reduction in the presence of oxygen
journal, March 2003


CO Oxidation below Room Temperature over Ir/TiO2 Catalyst Prepared by Deposition Precipitation Method
journal, June 2002

  • Okumura, Mitsutaka; Masuyama, Noriaki; Konishi, Eiko
  • Journal of Catalysis, Vol. 208, Issue 2
  • DOI: 10.1006/jcat.2002.3603

“Ir-in-ceria”: A highly selective catalyst for preferential CO oxidation
journal, April 2008


Determination of Surface Coverage of Catalysts: Temperature Programmed Experiments on Platinum and Iridium Sponge Catalysts after Low Temperature Ammonia Oxidation
journal, July 1999

  • van den Broek, A. C. M.; van Grondelle, J.; van Santen, R. A.
  • Journal of Catalysis, Vol. 185, Issue 2
  • DOI: 10.1006/jcat.1999.2506

A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity
journal, February 2011

  • Zhao, Yixin; Hernandez-Pagan, Emil A.; Vargas-Barbosa, Nella M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 5
  • DOI: 10.1021/jz200051c

Photovoltage Effects of Sintered IrO 2 Nanoparticle Catalysts in Water-Splitting Dye-Sensitized Photoelectrochemical Cells
journal, April 2014

  • Swierk, John R.; McCool, Nicholas S.; Saunders, Timothy P.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 30
  • DOI: 10.1021/jp500589n

Facile Synthesis of Iridium Nanocrystals with Well-Controlled Facets Using Seed-Mediated Growth
journal, July 2014

  • Xia, Xiaohu; Figueroa-Cosme, Legna; Tao, Jing
  • Journal of the American Chemical Society, Vol. 136, Issue 31
  • DOI: 10.1021/ja505716v

Partially oxidized iridium clusters within dendrimers: size-controlled synthesis and selective hydrogenation of 2-nitrobenzaldehyde
journal, January 2016

  • Higaki, Tatsuya; Kitazawa, Hirokazu; Yamazoe, Seiji
  • Nanoscale, Vol. 8, Issue 22
  • DOI: 10.1039/C6NR01460G

Selective hydrogenation of levulinic acid to 1,4-pentanediol in water using a hydroxyapatite-supported Pt–Mo bimetallic catalyst
journal, January 2015

  • Mizugaki, T.; Nagatsu, Y.; Togo, K.
  • Green Chemistry, Vol. 17, Issue 12
  • DOI: 10.1039/C5GC01878A

High-pressure high-temperature stability of hcp-Ir Os1− (x = 0.50 and 0.55) alloys
journal, April 2017


Initial Experimental Design Methodology Incorporating Expert Conjecture, Prior Data, and Engineering Models for Deposition of Iridium Nanoparticles in Supercritical Carbon Dioxide
journal, July 2013

  • Casciato, Michael J.; Vastola, Justin T.; Lu, J. C.
  • Industrial & Engineering Chemistry Research, Vol. 52, Issue 28
  • DOI: 10.1021/ie400996g

Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts
journal, April 2010

  • Strasser, Peter; Koh, Shirlaine; Anniyev, Toyli
  • Nature Chemistry, Vol. 2, Issue 6
  • DOI: 10.1038/nchem.623

The Promotional Effect of Gold in Catalysis by Palladium-Gold
journal, October 2005


Atomic Ensemble and Electronic Effects in Ag-Rich AgPd Nanoalloy Catalysts for Oxygen Reduction in Alkaline Media
journal, May 2012

  • Slanac, Daniel A.; Hardin, William G.; Johnston, Keith P.
  • Journal of the American Chemical Society, Vol. 134, Issue 23
  • DOI: 10.1021/ja303580b

Nanoscale-Phase-Separated Pd–Rh Boxes Synthesized via Metal Migration: An Archetype for Studying Lattice Strain and Composition Effects in Electrocatalysis
journal, September 2013

  • Sneed, Brian T.; Brodsky, Casey N.; Kuo, Chun-Hong
  • Journal of the American Chemical Society, Vol. 135, Issue 39
  • DOI: 10.1021/ja405387q

Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property
journal, January 2015

  • Liu, Hui-ling; Nosheen, Farhat; Wang, Xun
  • Chemical Society Reviews, Vol. 44, Issue 10
  • DOI: 10.1039/C4CS00478G

Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine
journal, January 2010

  • Singh, Sanjay Kumar; Xu, Qiang
  • Chemical Communications, Vol. 46, Issue 35
  • DOI: 10.1039/c0cc01879a

A solvent evaporation plus hydrogen reduction method to synthesize IrNi/C catalysts for hydrogen oxidation
journal, January 2014

  • Zhang, Weiwei; Li, Li; Ding, Wei
  • J. Mater. Chem. A, Vol. 2, Issue 26
  • DOI: 10.1039/C4TA00909F

Microwave Synthesis of Classically Immiscible Rhodium–Silver and Rhodium–Gold Alloy Nanoparticles: Highly Active Hydrogenation Catalysts
journal, November 2014

  • García, Stephany; Zhang, Liang; Piburn, Graham W.
  • ACS Nano, Vol. 8, Issue 11
  • DOI: 10.1021/nn504746u

Oxygen Reduction Reaction on Classically Immiscible Bimetallics: A Case Study of RhAu
journal, January 2018

  • Li, Hao; Luo, Long; Kunal, Pranaw
  • The Journal of Physical Chemistry C, Vol. 122, Issue 5
  • DOI: 10.1021/acs.jpcc.7b10974

Microwaves in organic synthesis. Thermal and non-thermal microwave effects
journal, January 2005

  • de la Hoz, Antonio; Díaz-Ortiz, Ángel; Moreno, Andrés
  • Chem. Soc. Rev., Vol. 34, Issue 2
  • DOI: 10.1039/B411438H

Synthesis of Inorganic Solids Using Microwaves
journal, April 1999

  • Rao, K. J.; Vaidhyanathan, B.; Ganguli, M.
  • Chemistry of Materials, Vol. 11, Issue 4, p. 882-895
  • DOI: 10.1021/cm9803859

Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals
journal, November 2011

  • Baghbanzadeh, Mostafa; Carbone, Luigi; Cozzoli, P. Davide
  • Angewandte Chemie International Edition, Vol. 50, Issue 48
  • DOI: 10.1002/anie.201101274

In Situ Observation of Nonequilibrium Local Heating as an Origin of Special Effect of Microwave on Chemistry
journal, April 2010

  • Tsukahara, Yasunori; Higashi, Ayano; Yamauchi, Tomohisa
  • The Journal of Physical Chemistry C, Vol. 114, Issue 19
  • DOI: 10.1021/jp100509h

Beneficial Effects of Microwave-Assisted Heating versus Conventional Heating in Noble Metal Nanoparticle Synthesis
journal, October 2012

  • Dahal, Naween; García, Stephany; Zhou, Jiping
  • ACS Nano, Vol. 6, Issue 11
  • DOI: 10.1021/nn3038918

Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes
journal, June 2008

  • Fan, Feng-Ru; Liu, De-Yu; Wu, Yuan-Fei
  • Journal of the American Chemical Society, Vol. 130, Issue 22
  • DOI: 10.1021/ja801566d

Silver Chloride as a Heterogeneous Nucleant for the Growth of Silver Nanowires
journal, April 2013

  • Schuette, Waynie M.; Buhro, William E.
  • ACS Nano, Vol. 7, Issue 5
  • DOI: 10.1021/nn400414h

25th Anniversary Article: Galvanic Replacement: A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties
journal, September 2013


Transition-Metal Nanocluster Size vs Formation Time and the Catalytically Effective Nucleus Number: A Mechanism-Based Treatment
journal, September 2008

  • Watzky, Murielle A.; Finney, Eric E.; Finke, Richard G.
  • Journal of the American Chemical Society, Vol. 130, Issue 36
  • DOI: 10.1021/ja8017412

Shape Control of Colloidal Metal Nanocrystals
journal, March 2008


Thermal decomposition behaviors of PVP coated on platinum nanoparticles
journal, January 2005

  • Du, Y. K.; Yang, P.; Mou, Z. G.
  • Journal of Applied Polymer Science, Vol. 99, Issue 1
  • DOI: 10.1002/app.21886

Dehydrogenation Selectivity of Ethanol on Close-Packed Transition Metal Surfaces: A Computational Study of Monometallic, Pd/Au, and Rh/Au Catalysts
journal, December 2017


Tunability of the Adsorbate Binding on Bimetallic Alloy Nanoparticles for the Optimization of Catalytic Hydrogenation
journal, April 2017

  • Luo, Long; Duan, Zhiyao; Li, Hao
  • Journal of the American Chemical Society, Vol. 139, Issue 15
  • DOI: 10.1021/jacs.7b01653

Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism
journal, April 2004


Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity
journal, February 2016


Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts
journal, September 2016

  • Matsubu, John C.; Zhang, Shuyi; DeRita, Leo
  • Nature Chemistry, Vol. 9, Issue 2
  • DOI: 10.1038/nchem.2607

Tuning the Selectivity of Catalytic Carbon Dioxide Hydrogenation over Iridium/Cerium Oxide Catalysts with a Strong Metal-Support Interaction
journal, August 2017

  • Li, Siwei; Xu, Yao; Chen, Yifu
  • Angewandte Chemie International Edition, Vol. 56, Issue 36
  • DOI: 10.1002/anie.201705002

In Situ Spectroscopic Investigation into the Active Sites for Crotonaldehyde Hydrogenation at the Pt Nanoparticle–Co 3 O 4 Interface
journal, September 2016


Hard Templating Pathways for the Synthesis of Nanostructured Porous Co 3 O 4
journal, February 2007

  • Rumplecker, Anja; Kleitz, Freddy; Salabas, Elena-Lorena
  • Chemistry of Materials, Vol. 19, Issue 3
  • DOI: 10.1021/cm0610635

Adsorption of Gases in Multimolecular Layers
journal, February 1938

  • Brunauer, Stephen; Emmett, P. H.; Teller, Edward
  • Journal of the American Chemical Society, Vol. 60, Issue 2, p. 309-319
  • DOI: 10.1021/ja01269a023

The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms
journal, January 1951

  • Barrett, Elliott P.; Joyner, Leslie G.; Halenda, Paul P.
  • Journal of the American Chemical Society, Vol. 73, Issue 1
  • DOI: 10.1021/ja01145a126

Crotonaldehyde hydrogenation on Ir supported catalysts
journal, December 2000


High surface area mesoporous Co3O4 from a direct soft template route
journal, January 2012

  • Dahal, Naween; Ibarra, Ilich A.; Humphrey, Simon M.
  • Journal of Materials Chemistry, Vol. 22, Issue 25
  • DOI: 10.1039/c2jm30460k

Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores
journal, January 1998


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Projector augmented-wave method
journal, December 1994


Works referencing / citing this record:

Synthesis, Characterization and Antifungal Activity of Fe(III) Metal–Organic Framework and its Nano-composite
journal, November 2019


Single-atom Fe and N co-doped graphene for lithium-sulfur batteries: a density functional theory study
journal, July 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.