DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage

Abstract

A fast-charging battery that supplies the maximum energy is a key element for vehicle electrification. High-capacity silicon anodes offer a viable alternative to carbonaceous materials, but they are vulnerable to fracture due to large volumetric changes during charge–discharge cycles. The low ionic and electronic transport across the silicon particles limits the charging rate of batteries. Herein, as a three-in-one solution for the above issues, we show that small amounts of sulfur doping (<1 at%) render quasi-metallic silicon microparticles by substitutional doping and increase lithium ion conductivity through the flexible and robust self-supporting channels as demonstrated by microscopy observation and theoretical calculations. Such unusual doping characters are enabled by simultaneous bottom-up assembly of dopants and silicon at the seed level in molten salts medium. Furthermore this sulfur-doped silicon anode shows highly stable battery cycling at a fast-charging rate at a high areal beyond those of a commercial standard anode.

Authors:
 [1];  [2]; ORCiD logo [2];  [2];  [2]; ORCiD logo [3];  [2];  [2];  [1]
  1. Pohang Univ. of Science and Technology (POSTECH), Pohang (Republic of Korea)
  2. Ulsan National Institute of Science and Technology (UNIST), Ulsan (Republic of Korea)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1543299
Report Number(s):
PNNL-SA-144155
Journal ID: ISSN 2041-1723
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Ryu, Jaegeon, Seo, Ji Hui, Song, Gyujin, Choi, Keunsu, Hong, Dongki, Wang, Chongmin, Lee, Hosik, Lee, Jun Hee, and Park, Soojin. Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage. United States: N. p., 2019. Web. doi:10.1038/s41467-019-10289-8.
Ryu, Jaegeon, Seo, Ji Hui, Song, Gyujin, Choi, Keunsu, Hong, Dongki, Wang, Chongmin, Lee, Hosik, Lee, Jun Hee, & Park, Soojin. Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage. United States. https://doi.org/10.1038/s41467-019-10289-8
Ryu, Jaegeon, Seo, Ji Hui, Song, Gyujin, Choi, Keunsu, Hong, Dongki, Wang, Chongmin, Lee, Hosik, Lee, Jun Hee, and Park, Soojin. Tue . "Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage". United States. https://doi.org/10.1038/s41467-019-10289-8. https://www.osti.gov/servlets/purl/1543299.
@article{osti_1543299,
title = {Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage},
author = {Ryu, Jaegeon and Seo, Ji Hui and Song, Gyujin and Choi, Keunsu and Hong, Dongki and Wang, Chongmin and Lee, Hosik and Lee, Jun Hee and Park, Soojin},
abstractNote = {A fast-charging battery that supplies the maximum energy is a key element for vehicle electrification. High-capacity silicon anodes offer a viable alternative to carbonaceous materials, but they are vulnerable to fracture due to large volumetric changes during charge–discharge cycles. The low ionic and electronic transport across the silicon particles limits the charging rate of batteries. Herein, as a three-in-one solution for the above issues, we show that small amounts of sulfur doping (<1 at%) render quasi-metallic silicon microparticles by substitutional doping and increase lithium ion conductivity through the flexible and robust self-supporting channels as demonstrated by microscopy observation and theoretical calculations. Such unusual doping characters are enabled by simultaneous bottom-up assembly of dopants and silicon at the seed level in molten salts medium. Furthermore this sulfur-doped silicon anode shows highly stable battery cycling at a fast-charging rate at a high areal beyond those of a commercial standard anode.},
doi = {10.1038/s41467-019-10289-8},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {Tue May 28 00:00:00 EDT 2019},
month = {Tue May 28 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels
journal, June 1997


Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques
journal, June 2015

  • Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep11466

Insulator-to-Metal Transition in Sulfur-Doped Silicon
journal, April 2011


Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Designing nanostructured Si anodes for high energy lithium ion batteries
journal, October 2012


Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries
journal, December 2008

  • Kim, Hyunjung; Han, Byunghee; Choo, Jaebum
  • Angewandte Chemie International Edition, Vol. 47, Issue 52, p. 10151-10154
  • DOI: 10.1002/anie.200804355

Revealing salt-expedited reduction mechanism for hollow silicon microsphere formation in bi-functional halide melts
journal, August 2018


Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes
journal, May 2012

  • Zhang, Huigang; Braun, Paul V.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl204551m

Multiscale Hyperporous Silicon Flake Anodes for High Initial Coulombic Efficiency and Cycle Stability
journal, November 2016


Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes
journal, July 2014

  • Li, Xiaolin; Gu, Meng; Hu, Shenyang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5105

Recycling rice husks for high-capacity lithium battery anodes
journal, July 2013

  • Jung, D. S.; Ryou, M. -H.; Sung, Y. J.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 30
  • DOI: 10.1073/pnas.1305025110

Inward lithium-ion breathing of hierarchically porous silicon anodes
journal, November 2015

  • Xiao, Qiangfeng; Gu, Meng; Yang, Hui
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9844

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes
journal, January 2016


Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life
journal, July 2011

  • Yao, Yan; McDowell, Matthew T.; Ryu, Ill
  • Nano Letters, Vol. 11, Issue 7, p. 2949-2954
  • DOI: 10.1021/nl201470j

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010

  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 4, p. 353-358
  • DOI: 10.1038/nmat2725

Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries
journal, September 2009

  • Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei
  • Nano Letters, Vol. 9, Issue 9, p. 3370-3374
  • DOI: 10.1021/nl901670t

Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries
journal, August 2016


Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes
journal, July 2018


Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries
journal, March 2010

  • Kim, Hyejung; Seo, Minho; Park, Mi-Hee
  • Angewandte Chemie International Edition, Vol. 49, Issue 12
  • DOI: 10.1002/anie.200906287

Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
journal, June 2013

  • Wu, Hui; Yu, Guihua; Pan, Lijia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2941

Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life
journal, April 2012

  • Ge, Mingyuan; Rong, Jiepeng; Fang, Xin
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300206e

Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes
journal, January 2016


Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes
journal, February 2015

  • Lu, Zhenda; Liu, Nian; Lee, Hyun-Wook
  • ACS Nano, Vol. 9, Issue 3
  • DOI: 10.1021/nn505410q

Ionically Conductive Self-Healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries
journal, February 2018

  • Munaoka, Takatoshi; Yan, Xuzhou; Lopez, Jeffrey
  • Advanced Energy Materials, Vol. 8, Issue 14
  • DOI: 10.1002/aenm.201703138

Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
journal, November 2013

  • Wang, Chao; Wu, Hui; Chen, Zheng
  • Nature Chemistry, Vol. 5, Issue 12
  • DOI: 10.1038/nchem.1802

Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries
journal, July 2017


Effect of Phosphorus-Doping on Electrochemical Performance of Silicon Negative Electrodes in Lithium-Ion Batteries
journal, March 2016

  • Domi, Yasuhiro; Usui, Hiroyuki; Shimizu, Masahiro
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 11
  • DOI: 10.1021/acsami.6b00386

Lattice parameter study of silicon uniformly doped with boron and phosphorus
journal, May 1974

  • Celotti, G.; Nobili, D.; Ostoja, P.
  • Journal of Materials Science, Vol. 9, Issue 5
  • DOI: 10.1007/BF00761802

Insight into insulator-to-metal transition of sulfur-doped silicon by DFT calculations
journal, January 2014

  • Zhao, Zong-Yan; Yang, Pei-Zhi
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 33
  • DOI: 10.1039/C4CP01522C

First principles study of lithium insertion in bulk silicon
journal, September 2010


Simultaneous Perforation and Doping of Si Nanoparticles for Lithium-Ion Battery Anode
journal, December 2017

  • Lv, Guangxin; Zhu, Bin; Li, Xiuqiang
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 51
  • DOI: 10.1021/acsami.7b12898

Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability
journal, January 2018

  • Chen, Ming; Li, Bo; Liu, Xuejiao
  • Journal of Materials Chemistry A, Vol. 6, Issue 7
  • DOI: 10.1039/C7TA10153H

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

A high performance lithium-ion sulfur battery based on a Li 2 S cathode using a dual-phase electrolyte
journal, January 2015

  • Wang, Lina; Wang, Yonggang; Xia, Yongyao
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C5EE00058K

Recent Advances in Electrolytes for Lithium-Sulfur Batteries
journal, April 2015

  • Zhang, Shiguo; Ueno, Kazuhide; Dokko, Kaoru
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500117

Conductive and Porous Silicon Nanowire Anodes for Lithium Ion Batteries
journal, January 2017

  • Hwang, Chihyun; Lee, Kangmin; Um, Han-Don
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1241707jes

Niobium tungsten oxides for high-rate lithium-ion energy storage
journal, July 2018


Extended Infrared Photoresponse in Te -Hyperdoped Si at Room Temperature
journal, August 2018


Insulator-to-Metal Transition in Selenium-Hyperdoped Silicon: Observation and Origin
journal, January 2012


A Silicon-Based Two-Dimensional Chalcogenide: Growth of Si 2 Te 3 Nanoribbons and Nanoplates
journal, March 2015

  • Keuleyan, Sean; Wang, Mengjing; Chung, Frank R.
  • Nano Letters, Vol. 15, Issue 4
  • DOI: 10.1021/nl504330g

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries
journal, March 2010


Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries
journal, December 2008

  • Kim, Hyunjung; Han, Byunghee; Choo, Jaebum
  • Angewandte Chemie, Vol. 120, Issue 52
  • DOI: 10.1002/ange.200804355

Reducing Dzyaloshinskii-Moriya interaction and field-free spin-orbit torque switching in synthetic antiferromagnets
journal, May 2021


High-performance lithium battery anodes using silicon nanowires
book, October 2010

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, p. 187-191
  • DOI: 10.1142/9789814317665_0026

Niobium tungsten oxides for high-rate lithium-ion energy storage.
text, January 2018

  • Griffith, Kent; Wiaderek, Kamila M.; Cibin, Giannantonio
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.30184

Extended Infrared Photoresponse in Te-Hyperdoped Si at Room Temperature
text, January 2018


Ionically Conductive Self-Healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries
journal, February 2018

  • Munaoka, Takatoshi; Yan, Xuzhou; Lopez, Jeffrey
  • Advanced Energy Materials, Vol. 8, Issue 14
  • DOI: 10.1002/aenm.201703138

A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries
journal, March 2010


Designing nanostructured Si anodes for high energy lithium ion batteries
journal, October 2012


Effect of Phosphorus-Doping on Electrochemical Performance of Silicon Negative Electrodes in Lithium-Ion Batteries
journal, March 2016

  • Domi, Yasuhiro; Usui, Hiroyuki; Shimizu, Masahiro
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 11
  • DOI: 10.1021/acsami.6b00386

Simultaneous Perforation and Doping of Si Nanoparticles for Lithium-Ion Battery Anode
journal, December 2017

  • Lv, Guangxin; Zhu, Bin; Li, Xiuqiang
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 51
  • DOI: 10.1021/acsami.7b12898

Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes
journal, January 2016


Multiscale Hyperporous Silicon Flake Anodes for High Initial Coulombic Efficiency and Cycle Stability
journal, November 2016


Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life
journal, July 2011

  • Yao, Yan; McDowell, Matthew T.; Ryu, Ill
  • Nano Letters, Vol. 11, Issue 7, p. 2949-2954
  • DOI: 10.1021/nl201470j

Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life
journal, April 2012

  • Ge, Mingyuan; Rong, Jiepeng; Fang, Xin
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300206e

Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries
journal, September 2009

  • Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei
  • Nano Letters, Vol. 9, Issue 9, p. 3370-3374
  • DOI: 10.1021/nl901670t

Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes
journal, February 2015

  • Lu, Zhenda; Liu, Nian; Lee, Hyun-Wook
  • ACS Nano, Vol. 9, Issue 3
  • DOI: 10.1021/nn505410q

Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
journal, June 2013

  • Wu, Hui; Yu, Guihua; Pan, Lijia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2941

Inward lithium-ion breathing of hierarchically porous silicon anodes
journal, November 2015

  • Xiao, Qiangfeng; Gu, Meng; Yang, Hui
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9844

Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes
journal, January 2016


Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries
journal, August 2016


Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes
journal, July 2018


Niobium tungsten oxides for high-rate lithium-ion energy storage
journal, July 2018


Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques
journal, June 2015

  • Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep11466

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries
journal, July 2017


Conductive and Porous Silicon Nanowire Anodes for Lithium Ion Batteries
journal, January 2017

  • Hwang, Chihyun; Lee, Kangmin; Um, Han-Don
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1241707jes

Works referencing / citing this record:

Room‐Temperature Crosslinkable Natural Polymer Binder for High‐Rate and Stable Silicon Anodes
journal, December 2019

  • Ryu, Jaegeon; Kim, Sungho; Kim, Jimin
  • Advanced Functional Materials, Vol. 30, Issue 9
  • DOI: 10.1002/adfm.201908433

Silicon: toward eco-friendly reduction techniques for lithium-ion battery applications
journal, January 2019

  • Zhu, Guanjia; Luo, Wei; Wang, Lianjun
  • Journal of Materials Chemistry A, Vol. 7, Issue 43
  • DOI: 10.1039/c9ta08554h