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Abstract. Multi-messenger observations of neutron star (NS) mergers have the potential to revolutionize
nuclear astrophysics. They will improve our understanding of nucleosynthesis, provide insights about the
equation of state (EOS) of strongly-interacting matter at high densities, and enable tests of the theory
of gravity and of dark matter. Here, we focus on the EOS, where both gravitational waves (GWs) from
neutron-star mergers and X-ray observations from space-based detectors such as NICER will provide more
stringent constraints on the structure of neutron stars. Furthermore, recent advances in nuclear theory have
enabled reliable calculations of the EOS at low densities using effective field theory based Hamiltonians
and advanced techniques to solve the quantum many-body problem. In this paper, we address how the
first observation of GWs from GW170817 can be combined with modern calculations of the EOS to extract
useful insights about the EOS of matter encountered inside neutron stars. We analyze the impact of various
uncertainties, the role of phase transitions in the NS core, and discuss how future observations will improve
our understanding of dense matter.

PACS. 26.60.Kp Equations of state of neutron-star matter – 26.60.-c Nuclear matter aspects of neutron
stars

1 Introduction

Multimessenger observations of neutron-star (NS) merg-
ers have the potential to revolutionize nuclear astrophysics
much in the same way as observations of the cosmic mi-
crowave background (CMB) radiation revolutionized par-
ticle astrophysics. Neutron-star merger events simultane-
ously emit gravitational waves (GWs) and electromag-
netic (EM) signals, from gamma-rays, X-rays, optical, in-
frared, to radio waves, and neutrinos. The first observation
of a NS merger, GW170817 in the GW spectrum, GRB
170817A in the gamma-ray spectrum, and AT 2017gfo in
the electromagnetic (EM) spectrum, was made on August
17, 2017, and in the weeks thereafter [1,2,3,4]. Triggered
by the Fermi and Integral telescopes [3,5], this observa-
tion provided detailed spectral and temporal features both
in GWs and EM radiation. Theoretical efforts to inter-
pret this data has provided insights into the production
of heavy r-process elements in NS mergers [6], and con-
straints on the EOS of dense matter [7,8,9,10,11]. NS
mergers have the potential to provide detailed informa-
tion on the properties of the merging compact stars, such
as their masses and radii [12], as well as on the properties
of the densest baryonic matter to be observed in the uni-

verse. Future detections of NS mergers, anticipated during
the next observing run of the Advanced LIGO and VIRGO
detectors, could provide even stronger constraints on the
EOS of strongly-interacting matter and the r-process.

We are pleased to contribute to this topical issue on
”First joint gravitational wave and electromagnetic ob-
servations: Implications for nuclear physics”, which con-
tains several articles devoted to the theory and computing
needed to improve the description of dense matter and to
model neutron-star mergers - efforts that will play a key
role in extracting insights from GW170817 and future de-
tections. Here, we elaborate on earlier work in Ref. [11],
where we analyzed GW170817 constraints on the dense
matter EOS, to provide additional details, discussions,
and new results.

Our contribution is structured as follows. In Sec. 2 we
describe the NS equation-of-state models employed in our
analysis. In particular, we use two models: the minimal
model or meta-model (MM), see Sec. 2.3 and the maximal
or speed-of-sound model (CSM), see Sec. 2.4. Both models
are constrained at low densities by state-of-the-art calcu-
lations of neutron-rich matter from chiral effective field
theory (EFT). We discuss these models in the context of
GW170817 in great detail in Sec. 3 and analyze the impact
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of phase transitions or future GW detections. Finally, we
summarize our results and provide an outlook in Sec. 4.

2 Models

In this section, we discuss the dense-matter models we
use in our analysis. Calculations of the EOS of neutron
matter based on Hamiltonians derived from chiral EFT
provide a reliable method to estimate the uncertainties
associated with poorly constrained aspects of two- and
many-body nuclear forces at short-distance [13,14]. Chi-
ral EFT is a systematic expansion for nuclear forces in
powers of momenta, and provides an efficient way to es-
timate theoretical uncertainties. It is however limited to
momenta up to the so-called breakdown scale, Λb, which
signals the breakdown of the effective theory due to addi-
tional high-momentum physics, e.g. the onset of new de-
grees of freedom. Since Λb is expected to be of the order
of ' 500− 600 MeV [15], chiral EFT is not applicable at
all densities encountered in neutron stars and chiral EFT
interactions have typically been used to describe neutron
matter only up to saturation density, nsat. Here, using in-
sights obtained in Ref. [11], we will analyze to which extent
chiral EFT predictions up to 2nsat with conservative error
estimates provide useful constrains for the nuclear equa-
tion of state, even though uncertainties grow fast with
density.

To describe the EOS at higher densities, we will con-
sider two extrapolation schemes rooted in low-density mi-
croscopic predictions and widely covering our present un-
certainties at higher density. These two schemes are the
minimal model or meta-model (MM), based on a smooth
extrapolation of chiral EFT results, and the maximal model
or speed-of-sound model (CSM), which explores the widest
possible domain for the EOS and contains also more dras-
tic behavior with density; see Ref. [11] for the first anal-
ysis of GWs with these models. These two models show
some overlap for properties of dense neutron-star matter,
as suggested from the masquerade phenomenon [16], but
also highlight differences: The confrontation of these mod-
els with each other and with observations sheds light on
the impact of the presence of strong phase transitions at
high density, as is detailed hereafter.

2.1 Pure neutron matter from chiral EFT

Neutron stars are ideal laboratories to test theories of the
strong interaction at finite chemical potential: the struc-
ture of neutron stars is governed by the knowledge of the
EOS of neutron-star matter, relating energy density, pres-
sure, and temperature. Additional uncertainties may come
from rotation and magnetic field distribution in the star,
but the dense-matter EOS is the key input. Since neu-
tron stars explore densities from a few gram per cubic
centimeter up to 10 times the nuclear saturation density,
nsat = 0.16 fm−3 = 2.7·1014g cm−3, the knowledge of the
EOS is required for densities covering several orders of

magnitude. Though young proto-neutron stars or neutron-
star remnants also explore the EOS at high temperatures
up to several tens of MeV, older neutron stars can typi-
cally be considered as cold objects at T = 0. This is espe-
cially true for two binary NS during the inspiral phase of
a neutron-star merger, whose properties can be analyzed
from the premerger GW signal.

While the EOS of the neutron-star crust, reaching up
to nsat/2, is rather well constrained, the uncertainty of the
EOS increases fast with density and the composition of
the inner core of NS is still unknown. Nevertheless, in the
density range from nsat/2 up to about 2nsat, the neutron-
star EOS can be constrained by state-of-the-art nuclear-
theory models. The starting point for these constraints are
calculations of pure neutron matter (PNM). PNM is an
idealized, infinite system consisting solely of neutrons, but
it is much easier to compute than systems containing also
protons. The reason is that certain parts of the nuclear
interaction, e.g., tensor interactions, are weaker or do not
contribute at all among neutrons. In contrast to symmetric
nuclear matter, PNM is also not unstable with respect
to density fluctuations below nsat, and uniform matter
remains the true ground state of PNM at all densities,
simplifying its calculation.

To reliably describe neutron matter, one needs pre-
cise and accurate quantum many-body methods in com-
bination with a reliable model for the nuclear interaction.
Neutron matter has been extensively studied in the last
decade, using a multitude of nuclear interactions and ad-
vanced ab initio many-body methods. Among these are,
e.g., many-body perturbation theory [18,19,20], the coupled-
cluster method [21], quantum Monte Carlo methods [22],
or the self-consistent Green’s function method [23]. A com-
parison of these different studies, see e.g., Refs. [24,25],
shows that neutron matter is rather well constrained by
these multiple ab initio approaches using diverse nuclear
Hamiltonians. In this paper, we will use calculations of
neutron matter obtained with the auxiliary-field diffusion
Monte Carlo (AFDMC) method [26] together with mod-
ern nuclear Hamiltonians from chiral EFT.

Quantum Monte Carlo methods are among the most
precise many-body methods for strongly interacting sys-
tems [26]. They provide the ground state of a many-body
system, governed by a non-relativistic nuclear Hamilto-
nian defining the Schrödinger equation, by evolving a trial
wave function ΨT in imaginary time,

ΨGS = lim
τ→∞

e−HτΨT , (1)

where ΨT is constructed so that it has a non-vanishing
overlap with the ground state ΨGS . Expanding ΨT in eigen-
functions of the Hamiltonian, one can easily see that con-
tributions of excited states decay with time, and only
the ground-state component of the trial wave function re-
mains. Quantum Monte Carlo methods have been used to
successfully describe nuclei up to 16O [26,27,28] and neu-
tron matter [22,13]. At very low densities, where neutron
matter is close to the unitary limit and interactions are
dominated by large scattering-length physics, these meth-
ods [29] have been successfully confronted to experimental
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Fig. 1. The energy per particle and pressure of pure neutron matter as functions of baryon density up to 2nsat. We show the
constraints from Ref. [14] based on AFDMC calculations with local chiral potentials at N2LO (red bands). As a comparison, we
show results at LO (black dashed lines), NLO (black dashed-dotted lines), as well as calculations using phenomenological NN
interactions only (black dotted lines) and including also phenomenological 3N forces (black solid lines). We also indicate the
unitary-gas bound of Ref. [17] (blue dashed-dotted lines) and the part of the uncertainty band that we use for our NS modeling
(red dotted lines); see text for more details.

measurements of cold atomic gases [30,31,32]. Due to its
great success to study strongly-interacting matter and nu-
clei [22,33,13,34,28], we employ in this work the AFDMC
method to determine PNM properties. For more details
on Quantum Monte Carlo methods we refer the reader to
Ref. [26].

On the interaction side, chiral EFT [35,36] is a mod-
ern theory for nuclear forces that is consistent with the
symmetries of Quantum Chromodynamics and systemat-
ically describes the nucleon-nucleon interaction in terms
of explicitly resolved longer-range pion exchanges as well
as short-range nucleon contact interactions. Chiral EFT is
based on a momentum expansion in terms of p/Λb, where
p is the typical momentum of the nuclear system at hand,
and Λb is the breakdown scale already discussed. The
short-range interaction terms parametrize all unresolved
and unknown high-energy physics beyond the breakdown
scale, and depend on a set of low-energy couplings (LECs),
which are typically fitted to nucleon-nucleon (NN) scat-
tering data and properties of light nuclei. Chiral EFT
does not only describeNN interactions but also consistent
three-body (3N) and higher many-body forces. It has been
successfully applied to calculate properties of ground and
excited states of nuclei, nuclear matter, as well as elec-
troweak processes; see, e.g, Ref. [25] for a review. Most
importantly, the systematic chiral EFT expansion enables
the estimation of theoretical uncertainties for these phys-
ical systems.

In our analysis in this work, we use local chiral EFT
interactions that have been constructed especially for the

use in QMC methods in Refs. [13,37,38,39]. These inter-
actions have been successfully tested in light- to medium-
mass nuclei and in n-α scattering [13,28] and agree with
our current knowledge of the empirical parameters of nu-
clear matter [17,40]. In Ref. [14], these interactions have
been used to study neutron matter up to 2nsat with theo-
retical uncertainty estimates using the AFDMC method.
For more details on QMC calculations with local chiral
interactions we refer the reader to Ref. [41].

In particular, in this work we use local chiral interac-
tions at a cutoff scale R0 = 1.0 fm with its systematic
uncertainty estimates. In Fig. 1 we show the results for
the energy per particle and pressure of neutron matter at
leading order (LO), next-to-leading order (NLO), and at
next-to-next-to-leading order (N2LO) with its uncertainty
band for densities ranging from 0.04 fm−3 up to 2nsat. We
find that the uncertainty bands increase fast with density
and are quite sizable at 2nsat. In addition to the results
for chiral interactions, we also show in Fig. 1 AFDMC re-
sults employing the phenomenological AV8’ NN and AV8’
NN plus UIX 3N interactions as a comparison. It is in-
teresting to note that the AV8’ and NLO NN interactions
agree very well with each other, which highlights the fact
that many-body forces are a considerable source of uncer-
tainty. Finally, we also compare all calculations with the
unitary-gas limit of Ref. [17].
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2.2 Discussion of uncertainties

The uncertainty bands shown in Fig. 1 include the follow-
ing sources of uncertainty: i) the truncation of the nuclear
Hamiltonian within the chiral expansion, ii) the regular-
ization scheme and scale, which are needed to implement
nuclear Hamiltonians in many-body methods, iii) the un-
certainties in the determination of low-energy couplings
from data, and iv) the many-body uncertainty that origi-
nates in approximations made when solving the Schrödinger
equation for the nuclear many-body system. The first three
sources, which originate in the nuclear Hamiltonian, dom-
inate over the many-body uncertainty from QMC meth-
ods. Among these three, the truncation uncertainty is the
dominant source of uncertainty and we will discuss it in
the following.

The truncation uncertainty can be expressed in the fol-
lowing way. Introducing the dimensionless expansion pa-
rameter Q = p/Λb and following Ref. [42], under the pre-
requisite that chiral EFT is a converging theory, one can
define the order-by-order contributions to an observable
X using the following infinite summation,

X = X0

∞∑

i=0

ciQ
i . (2)

Here, X0 sets the natural scale expected for the observable
X, e.g., the leading-order result, X0 = XLO (c0 = 1), and
the ci≥1 denote the expansion coefficients. In calculations
of nuclear systems, due to practical reasons this sum has
to be truncated at a certain order n, inducing the so-called
truncation uncertainty. This uncertainty is intrinsic to all
nuclear Hamiltonians but can be specified for chiral EFT
Hamiltonians by

∆X = X −X0

n∑

i=0

ciQ
i . (3)

It has been shown in Ref. [42] that for practical pur-
poses an estimate of the magnitude of the first truncated
term in Eq. (2), given by i = n + 1, is a sufficient un-
certainty estimate. To obtain this estimate, both the size
of the unknown expansion coefficient cn+1 and of the ex-
pansion parameter Q are required. A conservative choice
for the coefficient cn+1 is the maximum of all previously
found coefficients,

cn+1 =
n

max
i=0

ci , (4)

while Q has to be estimated from the typical momentum
scale for the system at hand. This uncertainty prescrip-
tion is similar to the one presented by Epelbaum, Krebs,
and Meißner (EKM) [43], and the truncation uncertainty,
e.g., at N2LO, can be obtained from an order-by-order
calculation as

∆XN2LO = max
(
Q4
∣∣XLO −X free

∣∣ , Q2
∣∣XNLO −XLO

∣∣ ,

Q
∣∣∣XN2LO −XNLO

∣∣∣
)

= Q4X0
n

max
i=0

ci . (5)

We have used this uncertainty estimate to compute the
truncation uncertainty, using Q =

√
3/5kF /Λb, with the

Fermi momentum kF and Λb = 500 MeV.

The total uncertainty bands in Fig. 1 additionally in-
clude the other three sources of uncertainty. The regular-
ization scheme dependence has been explored by explicitly
including regulator artifacts for local regulators. Specifi-
cally, in Fig. 1, the neutron-matter uncertainty bands in-
clude three different local chiral Hamiltonians which ex-
plore short-range 3N regulator artifacts; see Ref. [13] for
details on the Hamiltonians and Ref. [44] for details on
the regulator artifacts. These two sources of uncertain-
ties dominate the total uncertainty band, while the many-
body uncertainty is negligible.

To estimate the convergence of the chiral expansion at
different densities, the series of expansion coefficients of
Eq. (2) can provide insights. In Ref. [14], we have stud-
ied the convergence of the chiral series in pure neutron
matter and found it to be reasonable up to a density
of 2nsat. Beyond that, we expect the chiral expansion to
break down even though the expansion parameter only in-
creases by approximately 25% from nsat to 2nsat. There-
fore, we restrict the chiral EFT input to densities up to
2nsat. In addition, we exclude one chiral Hamiltonian from
further consideration because its regulator artifacts lead
to a spurious and unphysical attractive 3N contribution
in neutron matter, as discussed in Ref. [14]. This Hamil-
tonian represents the lower, soft part of the uncertainty
band and is also in conflict with the unitary-gas bound
of Ref. [17], shown in Fig. 1 as a blue dashed line. Ex-
cluding this Hamiltonian changes the lower bound of the
uncertainty band to the red-dotted line in Fig. 1, in good
agreement with the unitary-gas constraint.

In the following, we use this chiral EFT band up to
a density ntr to constrain two different modelings for the
high density equation of state. By varying ntr from nsat to
2nsat, we will show that, despite the rapid increase of the
uncertainty of the neutron-matter EOS with density, chi-
ral EFT constraints remain extremely useful up to 2nsat.

2.3 The minimal model

The first model that we consider in this analysis, the min-
imal model or meta-model (MM), assumes the EOS to be
smooth enough to be describable in terms of a density ex-
pansion about nsat. Here, we briefly describe the MM, but
see also Refs. [40,45] for more details.

The MM is described in terms of the empirical param-
eters of nuclear matter, which are defined as the Taylor
coefficients of the density expansion of the energy per par-
ticle of symmetric nuclear matter esat(n) and the symme-
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Pα Esat Esym nsat Lsym Ksat Ksym Qsat Qsym Zsat Zsym b

MeV MeV fm−3 MeV MeV MeV MeV MeV MeV MeV

Max -15 38 0.17 90 270 200 1000 2000 3000 3000 14

Min -17 26 0.15 20 190 -400 -1000 -2000 -3000 -3000 1

Table 1. Empirical parameters and their domain of variation entering into the definition of the MM (9). The parameters κsat
and κsym are fixed such that m∗

sat/m = 0.75 in symmetric matter and m∗
n/m−m∗

p/m = −0.1 in neutron matter.

try energy ssym(n),

esat(n) = Esat +
1

2
Ksatx

2 +
1

6
Qsatx

3 +
1

24
Zsatx

4 + ...

(6)

ssym(n) = Esym + Lsymx+
1

2
Ksymx

2 +
1

6
Qsymx

3

+
1

24
Zsymx

4 + ... , (7)

where the expansion parameter x is defined as x = (n −
nsat)/(3nsat) and n = nn + np is the baryon density, nn/p
are the neutron and proton densities. A good representa-
tion of the energy per particle around nsat and for small
isospin asymmetries δ = (nn−np)/n can be obtained from
the following quadratic approximation,

e(n, δ) = esat(n) + ssym(n) δ2 . (8)

The lowest order empirical parameters can be extracted
from nuclear experiments [40], but typically carry uncer-
tainties. Especially the symmetry-energy parameters are
of great interest to the nuclear physics community and
considerable effort is invested into a better estimation of
their size.

The MM constructs the energy per nucleon as,

eN (n, δ) = tFG∗(n, δ) + vN (n, δ), (9)

where the kinetic energy is expressed as

tFG
∗
(n, δ) =

tFGsat
2

(
n

nsat

)2/3 [(
1 + κsat

n

nsat

)
f1(δ)

+κsym
n

nsat
f2(δ)

]
, (10)

and the functions f1 and f2 are defined as

f1(δ) = (1 + δ)5/3 + (1− δ)5/3 , (11)

f2(δ) = δ
(

(1 + δ)5/3 − (1− δ)5/3
)
. (12)

The parameters κsat and κsym control the density and
asymmetry dependence of the Landau effective mass as
(q=n or p),

m

m∗q(n, δ)
= 1 + (κsat + τ3κsymδ)

n

nsat
, (13)

where τ3 = 1 for neutrons and -1 for protons. Taking the
limit κsat = κsym = 0, Eq. (10) provides the free Fermi
gas energy.

The potential energy in Eq. (9) is expressed as a se-
ries expansion in the parameter x and is quadratic in the
asymmety parameter δ,

vN (n, δ) =

N∑

α≥0

1

α!
(vsatα + vsymα δ2)xαuNα (x), (14)

where the function uNα (x) = 1−(−3x)N+1−α exp(−bn/nsat)
ensures the limit eN (n = 0, δ) = 0. The parameter b is
taken large enough for the function uNα to fall sufficiently
fast with density and to not contribute at densities above
nsat. A typical value is b = 10 ln 2 ≈ 6.93 such that the ex-
ponential function is 1/2 for n = nsat/10. The MM param-
eters vsatα and vsymα are simply expressed in terms of the
empirical parameters. The MM as expressed in Eqs.(9),
(10), and (14) coincides with the meta-model ELFc de-
scribed in Ref. [40], where detailed relations can be found.
To obtain the neutron-star EOS, we extend our models to
β-equilibrium and include a crust as described in Ref. [45].
By varying the empirical parameters within their known
or estimated uncertainties, it was shown that the MM can
reproduce many existing neutron-star EOS that are based
on the assumption that a nuclear description is valid at all
densities probed in neutron stars. Therefore, this model is
a reliable representation for EOS without exotic phases of
matter separated from the nucleonic phase through strong
phase transitions.

In the following, the parameter space for the MM will
be explored within a Markov-Chain Monte-Carlo algo-
rithm, where the MM parameters are allowed to freely
evolve inside the boundaries given in Table. 1. The result-
ing models satisfy the chiral EFT predictions in neutron
matter for the energy per particle and the pressure up to
ntr, causality, stability, positiveness of the symmetry en-
ergy (ssym(n) > 0), and also reach the maximum observed
neutron-star mass Mobs

max, see the discussion in Sec. 2.5.
The maximum density associated with each EOS within
the MM is given either by the break-down of causality, sta-
bility, or positiveness of the symmetry energy condition,
or by the end point of the stable neutron-star branch.

2.4 The maximal model

The second model that we consider in this analysis, the
maximal model (CSM), is based on an extension of the
speed of sound in neutron-star matter. Starting from the
pure neutron matter calculations, we construct the neutron-
star EOS up to ntr by constructing a crust as described
in Ref. [46] and extending the neutron-matter results to β
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Fig. 2. Comparison of the allowed EOS envelopes for the MM (black bands) and the CSM (red bands). We show three cases:
a) the most general case, where ntr = nsat and only Mmax ≥ 1.9M� is enforced, b) for ntr = nsat when enforcing 70 ≤ Λ̃ ≤ 720
and c) for ntr = 2nsat. When additionally enforcing R1.6 ≥ 10.68 km [12], the hatched regions are excluded.

equilibrium above the crust-core transition. Having con-
structed the EOS up to ntr we compute the speed of sound,

c2S =
∂p(ε)

∂ε
, (15)

where p is the pressure and ε is the energy density. Above
ntr, we parametrize the speed of sound in a very general
way: we randomly sample a set of points c2S(n), where
the values for cS have to be positive and are limited by
the speed of light (stability and causality), and interpo-
late between the different sampling points using linear seg-
ments. The individual points are randomly distributed in
the interval ntr−12nsat. From the resulting speed-of-sound
curve, we reconstruct the EOS step-by-step starting at ntr,
where ε(ntr), p(ntr), and ε′(ntr) are known:

ni+1 = ni +∆n (16)

εi+1 = εi +∆ε = εi +∆n ·
(
εi + pi
ni

)
(17)

pi+1 = pi + c2S(ni) ·∆ε , (18)

where i = 0 defines the transition density ntr. In the sec-
ond line we have used the thermodynamic relation p =
n∂ε/∂n− ε, which is valid at zero temperature.

In that way, we iteratively obtain the high-density EOS.
We have explored extensions for a varying number of c2S(n)
points, i.e., for 5-10 points, and found that the differ-
ences between these extensions are marginal. We, there-
fore, choose 6 sampling points. For each sampled EOS, we
generate a second version which includes a strong first-
order phase transition with a random onset density and
width, to explicitly explore such extreme density behavior.

The CSM for neutron-star applications was introduced
in Ref. [14], and represents and extension of the model of
Ref. [47]. A similar model was used in Ref. [48]. However,
in contrast to Ref. [14] we have extended this model to ex-
plore the complete allowed parameter space for the speed
of sound, by abandoning the specific functional form of

Ref. [14] in favor of an extension using linear segments.
This more conservative choice leads to slightly larger un-
certainty bands, but allows us to make more definitive
statements about neutron-star properties. The resulting
EOS parameterizations represent possible neutron-star EOS
and may include drastic density dependences, e.g., strong
phase transitions which lead to intervals with a drastic
softening or stiffening of the EOS. This represents a stark
contrast to the MM, which does not include such behavior,
and might give insights into the constituents of neutron-
star matter at high-densities. The predictions of the CSM
represent the widest possible domain for the respective
neutron-star observables consistent with the low density
input from chiral EFT. If observations outside of this do-
main were to be made, this would imply a breakdown of
nuclear EFTs at densities below the corresponding ntr.

Since the CSM represents very general EOSs only gov-
erned by the density dependence of the speed-of-sound, it
does not allow any statements about possible degrees of
freedom. In this sense, it is very similar to extensions using
piecewise polytropes which were introduced in Ref. [49]
and have been used extensively to determine neutron-star
properties; see, e.g., Ref. [50,51,7]. However, in contrast
to polytropic extensions, in the CSM the speed of sound
is continuous except when first-order phase transition are
explicitly accounted for. Discontinuities in the speed of
sound affect the study of tidal polarizabilities, where c−1S
enters, by introducing features whose source is solely the
choice of parametrization.

2.5 Comparison of MM and CSM

For both the MM and CSM we generate thousands of
EOSs that are consistent with low-density constraints from
chiral EFT. In addition, the observations of heavy two-
solar-mass pulsars in recent years [52,53,54] place impor-
tant additional constraints on these EOSs, which we en-
force by requiring Mmax > Mobs

max for all our EOSs. To be
conservative, as the limit for Mobs

max we choose the centroid
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Fig. 3. Comparison of the allowed MR envelopes for the MM (black bands) and the CSM (red bands). We show three cases:
a) the most general case, where ntr = nsat and only Mmax ≥ 1.9M� is enforced, b) for ntr = nsat when enforcing 70 ≤ Λ̃ ≤ 720,
and c) for ntr = 2nsat. When additionally enforcing R1.6 ≥ 10.68 km [12], the hatched regions are excluded.

of the maximum observed mass minus twice the error-bar
on the observation. For the two heaviest neutron stars ob-
served up to now [52,53,54], this gives Mobs

max ≈ 1.9M�.

We now compare the predictions of both the MM (black
bands with solid contour) and CSM (red bands with dot-
ted contour) for the EOS of neutron-star matter, see Fig. 2,
and the mass-radius (MR) relation, see Fig. 3. In the
respective figures, we show the EOS and MR envelopes
for ntr = nsat [panels (a)] and for ntr = 2nsat [pan-
els (c)], where ragged edges are due to the limited num-
ber of models. In all cases, the MM is a subset of the
CSM, as expected. Also, the two models, which treat the
neutron-star crust with different prescriptions, show ex-
cellent agreement at low densities. For ntr = nsat, the
MM and CSM EOSs agree very well up to ntr, while for
ntr = 2nsat the MM only samples a subset of the chi-
ral EFT input, because the Mobs

max constraint forces the
EOS to be sufficiently stiff which excludes the softest low-
density neutron-matter EOS. This is a consequence of
the smooth density expansion around nsat in the MM. In
the CSM, instead, a non-smooth stiffening of these soft-
est EOS at higher densities can help stabilize heavy neu-
tron stars, which is why the complete low-density band
from chiral EFT is sampled. We also find that going from
ntr = nsat to ntr = 2nsat allows to considerable reduce
the EOS uncertainty for the CSM. The MM uncertainty
is also slightly reduced and the MM band gets narrower.
These results show that even though the theoretical un-
certainties in the neutron-matter EOS increase fast in the
density range 1 − 2nsat, the additional information pro-
vided allows to substantially reduce uncertainties in the
CSM EOS: essentially, the chiral EFT constraint excludes
the possibility of phase transitions in the region going from
1 to 2nsat. The impact of phase transitions above 2nsat on
the EOS is very much reduced compared to the case where
they are allowed to appear at lower densities, because we
impose the Mobs

max constraint. A large domain of soft CSM
EOSs is, thus, excluded. The stiff MM and CSM EOS are
very close up to 2nsat, as expected.

These observations are also reflected in the MR predic-
tions of both models. For ntr = nsat [panel (a)], the CSM
(MM) leads to a radius range of a typical neutron star
of 1.4M� of 8.4 − 15.2 km (10.9 − 13.5 km). This range
reduces dramatically for ntr = 2nsat [panel (c)], where we
find 8.7− 12.6 km (10.9− 12.0 km) for the CSM (MM).

In the last case, the radius uncertainty for a typical
neutron star is only about 1 km in the MM, compatible
with the expected uncertainty of the NICER mission [55].
This allows for a possible tight confrontation between the
MM and the NICER results. If such an observation should
be made in the near future, we will be able to better
constrain dense-matter phase transitions. In contrast, the
CSM, which includes EOS with sudden softening or stiff-
ening at higher densities, dramatically extends the allowed
envelopes for the EOS and the MR relation as compared
with the MM. These differences in the predictions of the
MM and CSM can be used to identify regions for the
neutron-star observables, for which statements about the
constituents of matter might be possible. For example, the
observation of a typical neutron star with a radius of 10
km would imply the existence of a softening phase transi-
tion, that would hint on new phases of matter appearing
in the core of neutron stars. Instead, in regions were both
the MM and CSM agree, the masquerade problem does
not allow statements about the constituents of neutron-
star matter at high densities [16].

In Fig. 3, the maximum mass for ntr = nsat is almost
4M� while it is only 2.9M� if ntr = 2nsat. It is interest-
ing to compare these findings with previous predictions
for the maximum mass of neutron stars. Connecting a nu-
cleonic EOS to the stiffest possible EOS at ntr = 2nsat,
the maximum mass was predicted to be 2.9M� [56], as
in our case. With a similar approach but defining ntr to
lie between 1 and 2nsat, Ref. [57] predicted the maximum
mass to be 3.2M�. Note, however, that by lowering ntr,
the authors found 3.9M� as the maximum mass, again
very close to our prediction. The maximum mass of neu-
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tron stars is therefore tightly correlated with ntr for both
the MM and CSM models, as shown in Fig. 3.

Finally, due to the rather soft density dependence of
chiral EFT constraints in the density range 1 − 2nsat,
ntr = 2nsat together with the constraint Mmax > Mobs

max

seems to strongly disfavor EOS that lead to the appear-
ance of disconnected compact-star branches, as suggested
in Ref. [58]. Such EOS need very strong first-order phase
transitions, which would soften the EOS so much that
heavy two-solar-mass neutron stars cannot be supported,
in accordance with the findings in Ref. [59]. Instead, chiral
EFT calculations up to ntr = 2nsat imply that EOSs with
first-order phase transitions lead to neutron stars of the
classification ”A” or ”C” of Ref. [47].

3 Results for GW170817

In this section, we confront the recent neutron-star merger
observation GW170817 by the LIGO-Virgo (LV) collabo-
ration with our two classes of EOS models.

3.1 Posterior of the LIGO-Virgo analysis

The LV collaboration observed the GW signal of GW170817
for about 100s (several 1000 revolutions, starting from 25
Hz) and performed detailed analyses of the wave front [4].
Because the chirp mass Mchirp, defined as

Mchirp =
(m1m2)3/5

(m1 +m2)1/5
, (19)

can be extracted from the entire signal, this observation
allowed to put tight constraints on it. For GW170817, the
LV collaboration precisely determined Mchirp = 1.186 ±
0.001M�.

The extraction of higher-order GW parameters from
the wavefront is complicated for several reasons. First,
higher-order parameters are sensitive to the GW signal
at later times and, thus, only a smaller part of the signal
is suitable for their extraction. Second, there exist am-
biguities between different higher-order parameters, e.g.,
between the individual neutron-star spins and the tidal
polarizability. Because of this, the LV collaboration pro-
vided results for both a low-spin and a high-spin scenario.
In this work, we only investigate the low-spin scenario for
two reasons. First, large spins are not expected from the
observed galactic binary NS population. Second, because
neutron stars spin down over time, low spins are also ex-
pected from the extremely long merger time of GW170817
of the order of gigayears. Therefore, the low spin scenario
is expected to be the more realistic scenario for binary
neutron-star mergers such as GW170817.

The above mentioned problems in the extraction of
higher-order parameters lead to weaker constraints on the
individual masses of the two component neutron stars in
GW170817. Withm1 being the mass of the heavier andm2

being the mass of the lighter neutron star in the binary,
the mass distribution of the individual stars is typically
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Fig. 4. Posteriors for the LV observation of GW170817. Upper
panel: The mass distributions for m1 and m2 from Ref. [4] (his-
tograms) and the distributions used in this work (solid lines),
see Eq. (22). Lower panel: Marginalized and normalized pos-
terior probability for the distribution p(Λ̃) as defined in this
work. We also show the corresponding distributions for the
analysis of the LV collaboration (LVC), and the reanalysis of
Ref. [60] for the two extreme cases [uniform mass prior (u) and
mass prior informed by double neutron stars (d)].

described in terms of the parameter q = m2/m1. The
observed mass distributions for m1 and m2 are presented
as histograms in the upper panel of Fig. 4. To use this
information in our calculations, we describe the posterior
of the LV collaboration for Mchirp and q by the analytical
probability distribution [61]

p(q,Mchirp) = p(q)p(Mchirp) , (20)

where

p(Mchirp) ∝ exp[−(Mchirp − M̄chirp)2/2σ2
M ] , (21)

with M̄chirp = 1.186M� and σM = 10−3M� [4]. For the
mass asymmetry q, we have fitted the function

p(q) = exp

(
−1

2
v(q)2 − c

2
v(q)4

)
, (22)

to the LV posterior for the component masses. We find c =
1.83 and v(q) = (q−0.89)/0.20, and compare the resulting
normalized analytic distributions with the observed data
in the upper panel of Fig. 4.

Since in this work we will confront the gravitational-
wave observations of the LV collaboration with nuclear
physics constraints, i.e., use our set of EOSs together with
the source properties of GW170817 to postdict the distri-
bution of Λ̃, we do not make use of the observed probabil-
ity distribution for Λ̃. However, for reasons of complete-
ness, we have fitted functions consisting of two and three
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Table 2. Fit parameters of the Gaussians of Eq. (23)

N a1 Λ1 σ1 a2 Λ2 σ2 a3 Λ3 σ3

2 281.6 212.6 76.2 106.5 547.5 171.0
3 266.6 212.4 74.2 85.0 523.6 219.2 38.6 560.8 49.5

Gaussians of the form

p(Λ̃) =

N∑

i=1

aie
− 1

2

(
Λ̃−Λi
σi

)2

(23)

to the observed LV posterior for Λ̃. The resulting parame-
ters ai, qi and σqi are reported in Table 2, and the resulting
functions as well as the LV result are plotted in the lower
panel of Fig. 4, where the horizontal black line represents
the 90% LV confidence level for Λ̃. We also show the pos-
teriors for the reanalysis of Ref. [60] for the two extreme
cases [uniform mass prior (u) and mass prior informed by
double neutron stars (d)]. The main difference between
the two analyses lies in the appearance of a second peak
in the posterior probability distribution around Λ̃ ∼ 600
for the LV result. The origin of this second peak is not
well understood: the peak may be washed out considering
a wider domain of frequencies, starting from 23 Hz as in
Ref. [60]. The presence of the second peak is indeed an im-

portant issue for the prediction of Λ̃: including the second
peak, the upper boundary for the 90%-CL is 720, while it
drops if the second peak is absent.

Therefore, in the following, we consider a structureless
flat probability distribution in Λ̃, and sample the mass dis-
tributions for m1 and m2 in GW170817 from the analytic
function p(q,Mchirp).

3.2 Areas of constant Λ

Before addressing GW170817, we focus on the tidal po-
larizability Λ of individual neutron stars. The tidal polar-
izability describes how a neutron star deforms under an
external gravitational field, and depends on neutron-star
properties as

Λ =
2

3
k2

(
c2

G

R

M

)5

. (24)

Here, k2 is the tidal love number, that is computed to-
gether with the Tolman-Oppenheimer-Volkoff equations;
see, for example, Refs. [62,63,64] for more details.

It is interesting to look at areas of constant Λ within
the MR plane. In this case, the relation of neutron-star
mass and radius is given by

M =

(
3

2

Λ

k2

)− 1
5 c2

G
R , (25)

leading to the following scaling relation,

(
M

M�

)
= 0.6243

(
Λ

k2

)− 1
5
(

R

1 km

)
. (26)
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Fig. 5. Mass-radius envelopes for ntr = nsat of Fig. 3(a)
and areas of constant Λ for all CSM EOS parametrizations.
We show areas for Λ = 200 (red), Λ = 400 (green), Λ = 800
(blue), and for Λ = 1600 (brown). For a typical 1.4M� neutron
star (horizontal dashed line), a constraint on Λ is equivalent
to a radius constraint. The corresponding values for the MM
(not shown) always lie withing the areas for the CSM.

For constant Λ, this implies an almost linear relationship
between M and R, because the love number k2 does not
vary strongly in that case. In addition, for different values
of Λ, the slopes are rather similar due to the small expo-
nent −1/5. In Fig. 5, we plot the mass-radius relation for
ntr = nsat for the CSM, together with areas of constant
Λ. In particular, we show areas for Λ = 200, 400, 800, and
1600.

While there is a tight correlation between radii and
tidal polarizabilities, from Fig. 5 one can see that both
quantities still provide complementary information. For
example, an exact observation of the tidal polarizability
of a neutron star, i.e., with vanishing uncertainty, would
still lead to a remaining uncertainty for the radius of a typ-
ical 1.4M� neutron star. To be specific, for Λ = 200, the
remaining radius uncertainty is still ≈ 1 km, compatible
with the expected uncertainty of NICER [55]. For larger
values of Λ this uncertainty decreases and for Λ = 800 it
is only ≈ 0.5 km. However, based on GW170817 values
larger than 720 are ruled out for typical neutron stars.
Hence, both tidal deformabilities and radii offer comple-
mentary information on neutron-star global structure.
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Fig. 6. Envelopes for the CSM (red) and the MM (black) for the predicted tidal polarizability parameter Λ̃ as a function
of chirp mass for neutron-star binaries with component masses in the range 1.0 − 1.9M�. We show: panel (a) the results for
ntr = nsat, panel (b) for ntr = nsat when additionally enforcing the LV constraint from GW170817, and panel (c) for ntr = 2nsat.
In panels (d) and (e), we show how this band reduces under a fictitious observation of a merger of two 1.6M� neutron stars
when Λ̃ would be measured to be 200 − 300. We indicate GW170817 and the fictitious measurement (blue error bars) and the
corresponding chirp masses (dotted vertical lines). In panel (e), the GW observations together with nuclear physics constraints
would rule out the MM.

Finally, from Eq. (26), one can infer the following fit,

(
M

M�

)
=

a

(b+ Λ)1/5

(
R

1 km

)
, (27)

where we find a = 0.406435 and b = 68.5.

3.3 Tidal polarizabilities of GW170817

For neutron-star mergers, the GW signal allows the ex-
traction of the binary tidal polarizability parameter Λ̃.
This parameter is defined as a mass-weighted average of
the individual tidal polarizabilities,

Λ̃ =
16

13

[
(m1 + 12m2)m4

1Λ1

m5
tot

+
(m2 + 12m1)m4

2Λ2

m5
tot

]
.

(28)
As discussed in Sec. 3.1, the extraction of the binary tidal
polarizability suffers from increased uncertainties, due to
its importance only during the last few orbits [62,63] and

correlations among the parameters. In the initial pub-
lication of the LV collaboration [65], the constraint on

Λ̃ ≤ 800 was reported with 90% confidence (corrected

to be Λ̃ ≤ 900 in Ref. [4]). This analysis, however, was
very general and did not assume both objects in the bi-
nary system to have the same EOS. Several reanalyses
have since improved this constraint. Assuming that both
compact objects were neutron stars governed by the same
EOS, Ref. [60] used polytropic EOS models and a Bayesian
parameter estimation with additional information on the
source location from EM observations to derive limits on
Λ̃ for different prior choices for the component masses: for
uniform priors the reported 90% confidence interval was
Λ̃ = 84 − 642, for a component mass prior informed by
radio observations of Galactic double neutron stars the
result was Λ̃ = 94 − 698, and for a component mass
prior informed by radio pulsars the reported result was
Λ̃ = 89− 681. A reanalysis by the LV collaboration found
a new 90% confidence of 70 ≤ Λ̃ ≤ 720 [4]; see Fig. 4.
Finally, the LV collaboration reported an additional re-
sult, assuming that both merging objects were neutron
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stars governed by the same EOS [66]. This EOS was based
on the Lindblom parametrization [67] stitched to the SLy

EOS for the crust, and resulted in Λ̃ = 70− 580 with 90%
confidence. For the different extractions, the lower limit is
rather stable, but the upper limit varies from 580-800.

In general, the uncertainty range for all extractions is
sizable. In the following, we will investigate the resulting
Λ̃ obtained from state-of-the-art nuclear-physics models
at low densities. To obtain these results, for all our EOS
models we compute the combined tidal polarizability Λ̃ for
thousands of NS-NS binaries where the sample the mass
m1 of the heavier neutron star in the range 1.0 − 1.9M�
and the mass of the lighter neutron star m2 in the range
1.0M� −m1 (implying q ≤ 1). This allows us to explore
a wide range of mass asymmetries and chirp masses rang-
ing from 0.871M� to 1.654M�, which naturally includes
the chirp masses for several known neutron-star binaries
as well as GW170817. We show the resulting envelopes
for Λ̃ as a function of Mchirp in Fig. 6. We also indicate
the chirp mass for GW170817, MGW170817

chirp = 1.186M� [4]

(blue dashed vertical lines) that allows to extract nuclear-

physics constraints on Λ̃ of GW170817.

Using nuclear-physics constraints from chiral EFT up
to nsat [panel (a)] leads to the widest allowed range for

Λ̃ for a given chirp mass. This is true for both the MM
and the CSM, but the CSM envelope is much larger due
to the wider flexibility of the EOS at higher densities. For
GW170817 (MGW170817

chirp = 1.186M�), we find Λ̃CSM =

60 − 2180 and Λ̃MM = 230 − 950; for the CSM, the un-
certainty in Λ̃ is much larger than the LV constraint for
GW170817. For this transition density, both the MM and
the CSM can be constrained by the LV constraint on
GW170817 and, as a result, GW170817 adds information
on the mass-radius relation of neutron stars.

To explore the impact of the LV constraint of Ref. [4],
we make use of p(q,Mchirp) and, using a uniform prior,

select only EOS-m1,2 combinations with 70 ≤ Λ̃ ≤ 720.
In panel (b) of Fig. 6 we show the resulting envelope for

Λ̃(Mchirp) for the MM and CSM. In addition, we also show
the resulting envelopes for the EOS and the MR relation in
panels (b) of Figs. 2 and 3, respectively. Please note that
the resulting range of tidal polarizabilities for Mchirp =

1.186 of Λ̃ = 70− 1020 in Fig. 6(b) is larger than the LV
constraint. The reason is that we accept all EOS that fulfill
the LV constraint for any value of q allowed according to
p(q). The range in Fig. 6(b), however, is computed for
many more values of q. For example, if an EOS passes the
constraint Λ̃ ≤ 720 for q = 0.7 than the resulting Λ̃ for
q = 1 will be larger.

Naturally, enforcing this constraint rules out a consid-
erable part of EOSs that lie both on the high-pressure and
low-pressure side at high energy densities. This, again, is
reflected in the mass-radius relation, where neutron stars
with large radii are excluded by the LV constraint. For
our analysis and the CSM, we find that the radius of
a 1.4M� neutron star, R1.4, can be constrained to be
9.0 km < R1.4 < 13.6 km. This was also found in Ref. [7],
where a polytropic EOS expansion was used to constrain

the radius of neutron stars by enforcing the constraint
Λ1.4 < 800 (the initial LV constraint of Ref. [65]). Ref. [7]
found that R1.4 < 13.6 km, and both analyses are in ex-
cellent agreement.

Finally, we assume the chiral EFT constraint to be
valid up to 2nsat [panel (c)]. Even though the uncertain-

ties are still sizable, the predicted total range for Λ̃ reduces
dramatically. For GW170817, we find Λ̃CSM = 80 − 580
and Λ̃MM = 280 − 480. Our constraint, which is solely
guided by nuclear-EFT input, is much tighter than the ob-
servational LV constraint and in excellent agreement with
the recent detailed reanalysis by the LV collaboration [66].
We emphasize, though, that our analysis is more con-
straining than the LV reanalysis: our 100% envelopes are
compatible with the 90% contour of Ref. [66]. Therefore,
the sentiment that the neutron-star merger GW170817
revolutionized our understanding of the EOS, is a bit of
an exaggeration. GW170817, however, represents a new
hope for obtaining different constraints on the EOS that
might also offer the possibility to investigate new phases of
dense matter. In this sense, GW170817 and the expected
future detections will surely contribute to answering the
long standing question of the nature of the NS core.

We explicitly stress that our results imply that current
nuclear physics knowledge in the relevant density range
of 1 − 2nsat, as obtained by ab inito calculations using
modern nuclear Hamiltonians and state-of-the art many-
body methods, is compatible with the recent neutron-star
merger observation but more constraining for neutron-
star observables and the EOS. In addition, efforts in the
nuclear-theory community to improve nuclear interactions
might allow to considerably reduce the theoretical uncer-
tainty for the neutron-star-matter EOS between 1−2nsat,
which will tighten our constraints even more. In general,
this very interesting density range provides an excellent
laboratory to probe nuclear-theory predictions against as-
trophysical observations and heavy-ion collision experi-
ments.

3.4 Impact of varying ntr and the validity of chiral
EFT predictions

These present studies as well as the one of Ref. [14] are
the first to use chiral EFT calculations of the neutron mat-
ter EOS up to twice nuclear saturation density with reli-
able error estimates to compute tidal polarizabilities for
GW170817. Reliable uncertainty estimates are critical for
understanding the impact that GW detections will have
on elucidating the properties of dense matter inside neu-
tron stars, and theoretical calculations of the dense-matter
EOS without uncertainty estimates are of limited value
for a meaningful analysis of GW data. Uncertainty esti-
mates have shown that chiral EFT input remains useful
up to 2nsat, and we find, in contrast to other recent publi-
cations [7,8,9], that GW170817 does not provide new in-
sight about the EOS that cannot be obtained from current
nuclear physics knowledge. This message tempers claims
made in these recent publications which state that the up-
per limit on the tidal polarizability derived from GW data
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rules out stiff nuclear EOS. While this inference is correct,
such stiff EOSs are already ruled out based on state-of-the-
art nuclear Hamiltonians. In other words, models of dense
matter excluded by the upper limit on the tidal deforma-
bility from GW170817 are already incompatible with the
current microscopic EOSs at densities where error esti-
mates can still be justified.

Nevertheless, the reliability of chiral interactions at
these densities has been questioned. Although the conver-
gence of the chiral expansion cannot be strictly proven in
this density range, we present arguments to show that the
order-by-order convergence of the chiral expansion for the
EOS up to 2nsat is still reasonable. First, the expansion
parameter increases by only about 25% over the density
interval 1 − 2nsat. Second, Ref. [14] analyzed the order-
by-order convergence of the employed Hamiltonians at
2nsat, and showed that, even though the reliability natu-
rally decreases with increasing density, the order-by-order
convergence remains reasonable and consistent with sim-
ple power counting arguments within the theoretical un-
certainty estimates. Nevertheless, densities around 2nsat
seem to provide an upper limit to the applicability of the
chiral Hamiltonians we use in this work.

To support our main statement - namely that the con-
straints from GW170817 are compatible with but less re-
strictive than predictions of the EOS based on realistic
nuclear potentials and do not yield specific new informa-
tion about nuclear Hamiltonians or about possible phase
transitions at supra-nuclear density - in this context, we
investigate which density range for chiral EFT input is suf-
ficient to justify our statement. We present the total un-
certainty ranges for R1.4 (left panel) and Λ̃ for Mchirp =
1.186M�(right panel) as functions of the density ntr in

Fig. 7. For R1.4, we indicate the upper limit on the radii
of Ref. [7], R1.4 ≤ 13.6 km, which was obtained using
ntr = nsat and the LV constraint (horizontal dotted line).
We find that the CSM alone constrains the radii to be
smaller than this bound for ntr > 0.23 fm−3 ≈ 1.44nsat
(an 11% increase of the expansion parameter compared to
nsat). For the tidal polarizability, we indicate the LV con-
straint as a horizontal blue band and find that the CSM
leads to Λ̃ ≤ 720 as soon as ntr > 0.285 fm−3 ≈ 1.78nsat
(a 20% increase of the expansion parameter compared to
nsat). We would like to emphasize that these crucial val-
ues for ntr for both observables do not necessarily have
to agree, as seen in Fig. 7. The reason is that the upper
limit on Λ̃ depends on q while R1.4 does not. In Fig. 6(b)
we have seen that when varying q in the range allowed
by GW170817, Λ̃ can increase to values ∼ 1000 for the
EOS that pass the LV constraint from GW170817. Chiral
EFT input becomes compatible with this value at ntr ∼
0.23 fm−3, in agreement with the value for R1.4. At these
values for ntr, in particular at 1.44nsat, arguments for the
validity of chiral interactions remain even stronger, which
strengthens the validity of our main statement.

Finally, the value of ntr also affects the speed of sound
inside neutron stars. The speed of sound is expected to ap-
proach the conformal limit of c2S = 1/3 at very high den-
sities [68]. In neutron stars, though, it is not clear if this
conformal limit remains valid or not. As discussed in de-
tail in Ref. [14], the neutron-matter EOS up to ntr = 2nsat
requires the speed of sound to pass the conformal limit
to be sufficiently stiff to stabilize the observed two-solar-
mass neutron stars. In fact, for chiral models the speed
of sound has to increase beyond the conformal limit for
ntr > 0.28 fm−3 and even for phenomenological nuclear
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Hamiltonians, which lead to stiffer neutron-matter EOS,
this statement remains valid for ntr > 0.31 fm−3. While
there might be EOS that are much stiffer below 2nsat and,
hence, stabilize the heaviest neutron stars while still obey-
ing the conformal limit, such EOS are ruled out by modern
nuclear Hamiltonians.

Therefore, the neutron-matter EOS up to 2nsat for
state-of-the-art nuclear Hamiltonians requires the speed
of sound in neutron stars to experience a non-monotonous
behavior, i.e, increasing beyond c2S = 1/3 but decreasing
at higher densities to approach this limit. For example,
for chiral EFT interactions and ntr = 2nsat, the speed of
sound has to reach values c2S ≥ 0.4. The question remains,
though, which forms of strongly-interacting matter lead
to such a behavior for the speed of sound. In order to es-
timate the impact of the speed-of-sound behavior on R1.4

and Λ̃, we present hatched areas in Fig. 7 which are ex-
cluded for c2s ≤ 0.5. We choose this limiting value solely
for illustrative purposes. This constraint slightly reduces
the upper bound on neutron-star radii but it would mostly
rule out low-radius neutron stars. The reason is that neu-
tron stars can have very small radii only for strong first-
order phase transitions with low onset densities. To simul-
taneously support 2M� neutron stars, the EOSs has to
experience a sudden subsequent stiffening, i.e., the speed
of sound has to increase dramatically. For a larger possi-
ble speed of sound, stronger phase transitions are allowed,
which leads to stars with smaller radii. Limits on c2S , on
the other hand, rule out the strongest phase transitions,
and increase the smallest possible radius. For c2S ≤ 0.5,
the lower limit on the radius of a 1.4M� neutron star is
approximately 10 km, of the order of the constraint of
Ref. [12].

3.5 Impact of additional constraints

Even though the tidal polarizabilities extracted from GW170817
alone may not revolutionize our understanding of the EOS,
several additional constraints based on the EM counter-
part were proposed. These additional constraints were mostly
based on the fact that the EM signal of GW170817 does
not seem to imply a prompt collapse of the hypermassive
merger remnant to a black hole. Instead, it is argued that
the merger remnant survived for several 100 milliseconds
before collapse. Based on this assumption, several groups
independently suggested the maximum mass of neutron
stars to be less than ≈ 2.2 − 2.3M� [61,71,72]. While
this constraint is powerful for smooth EOS models, which
exhibit a strong correlation between Mmax and radii of
typical neutron stars, the appearance of strong first-order
phase transitions in general EOS models implies that the
maximum mass is not very constraining for the structure
of typical neutron stars; see also Ref. [11].

Additional constraints for radii and tidal polarizabili-
ties were proposed based on the same assumptions. Ref. [12]
suggested that the EM observation can be used to ar-
gue that R1.6 ≥ 10.68+0.15

−0.04 km. In contrast to the Mmax

constraint, a radius constraint has a sizable impact on
the CSM: In Figs. 2(b) and (c) as well as Figs. 3(b) and
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Fig. 8. Envelopes for the correlation between Λ̃ of GW170817
and the radius of a 1.4M� (red) and the radius of a 1.6M�
(blue) neutron star for ntr = 2nsat and the CSM. The corre-
sponding values for the MM (not shown) lie within the CSM
envelopes. We also show the lower limit of the LV constraint
on the tidal polarizability of GW170817 [4], the proposed con-
straint of Ref. [69] and its update of Ref. [70], and the radius
constraint for a 1.6M� neutron star from Ref. [12].

(c) we indicate parts of the envelopes which are excluded
by R1.6 ≥ 10.68+0.15

−0.04 km by hatched areas. In addition,
Ref. [69] suggested that the amount of ejecta determined

from the EM observations implies Λ̃ > 400. This con-
straint was later updated to Λ̃ > 300 [70]. In Fig. 8,

we show the correlation between Λ̃ and the radii of a
1.4M� neutron star, R1.4, and a 1.6M� neutron star, R1.6,
for ntr = 2nsat and the CSM. While in general radius
and tidal polarizabilities are correlated, the appearance of
phase transitions washes this correlation out. Fig. 8 again
highlights the fact that even an exact determination of
Λ̃ leaves a considerable radius uncertainty. Therefore, in-
dependent observations of radii and tidal polarizabilities
are crucial to pin down the high-density EOS of nuclear
matter.

In Fig. 8, we also show the constraints of Refs. [12,69,

70]. The radius constraint implies that Λ̃ ≥ 180 while the
constraint of Ref. [69] (Ref. [70]) implies R1.6 ∼ R1.4 ≥
11.5 km (10.5 km). All of these constraints are based on
empirical formulas extracted from simulations for a lim-
ited set of model EOSs. Especially for the constraints of
Refs. [69,70], this set contains only four nucleonic EOS
and, therefore, is likely overestimated [11]. In the case of
the first constraint, a similar argument might be made.
Nevertheless, in that case the authors try to explore the
full EOS dependence which results in a more conserva-
tive constraint. In both cases, however, future numerical
simulations with additional EOSs, including, e.g., phase
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Fig. 9. Equations of state for ntr = nsat which pass the LV constraint 70 ≤ Λ̃ ≤ 720 for q = 0.7 but not for q = 1.0 [panel (a)]
and vice versa [panel (b)].

transitions, can be used to refine these constraints and
improve their robustness.

In addition to inferences from GW170817, additional
future observations might dramatically improve our un-
derstanding of the EOS. The NICER [55] and eXTP [73]
missions will provide neutron-star radii with a few percent
uncertainty: the NICER mission is expected to provide
first results within this year. As we have seen above, these
future radius observations might considerably reduce the
ambiguity of the allowed EOS models. A measurement of
R1.4 with a 5% accuracy will add valuable information
and might help distinguish EOSs with and without phase
transitions; see also Ref. [14].

In addition, in the next years additional neutron-star
merger observations by the LV collaboration are expected.
While the uncertainty for the tidal polarizability associ-
ated with GW170817 is not sufficient to constrain the
EOS, this might change for future observations. For ex-
ample, mergers with better signal-to-noise ratios could
be observed, or sufficiently many mergers are observed
so that accurate information can be extracted. In addi-
tion, third generation GW detectors might provide tidal-
polarizability measurements with 10% uncertainty. To il-
lustrate the possibilities offered by such new GW events,
we inject in Fig. 6(d) and (e) a fictituous measurement

of Mchirp = 1.385 and Λ̃ to be measured in the range
200−300. Such an observation would dramatically reduce
the uncertainties in the EOS: it would reduce the allowed
radius range for a typical neutron star to 11.7-13.4 km for
ntr = nsat and to only 11.7-12.5 km for ntr = 2nsat. Also,
it is interesting to note that in this case the MM cannot re-
produce the two events, GW170817 and the fictitious one.
There is, therefore, a great potential to combine future de-
tections as a filter for EOS models and the accumulation

of GW tidal deformabilities may offer the possibility to
make statements about the existence of phase transitions
in dense matter.

3.6 Impact of phase transitions on tidal polarizability

In the previous sections, we have seen that ranges for all
neutron-star observables are larger for the CSM than the
MM because the CSM permits regions of drastic stiffening
or softenting of the EOS. In this section, we briefly discuss
the impact that strong phase transitions have on neutron-
star tidal polarizabilities.

Of special interest for the interpretation of merger ob-
servations is the behavior of the EOS for stars in the mass
range of the two component masses: For GW170817 this
range is around M = 1.4M�. EOS with strong first-order
phase transitions appearing in stars of this mass range
might be probed by future merger observations. For in-
stance, the CSM, which includes such phase transitions,
permits small values for Λ̃ due to strong softening and
subsequent stiffening of the EOS, but the MM prevents
Λ̃ to be below ≈ 250. These observable differences among
the two models allow us to identify ranges of tidal de-
formabilities (and neutron-star observables in general) for
which a strong first-order phase transition is preferred or
even necessary, providing a means to probe new states of
matter inside neutron stars. In the above example, an ob-
servation of Λ̃ ≤ 250 would indicate a softening of the
EOS that smooth (nucleonic) EOS cannot provide.

We have also seen before that strong phase transitions
weaken the correlation between R and Λ̃. For EOSs with
phase transitions in the relevant mass range, which pro-
duce lighter stars with larger radii and heavier stars with
smaller radii, a significant mass asymmetry of a merging
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Fig. 10. Relation connecting the common radius R̂ and the binary tidal polarizability Λ̃ for 0.7 < q < 1.0 and for ntr = nsat

(left panel) or ntr = 2nsat (right panel). As a comparison, we show the relation Eq. (5) of Ref. [60] with its uncertainty (black
dotted lines) and our fits (blue dashed line).

binary keeps the EOS compatible with a constraint on
Λ̃ but permits larger radii for typical neutron stars and,
therefore, washes out this correlation.

In Fig. 9, we illustrate this behavior for ntr = nsat for
two interesting cases: EOSs which pass the LV constraint
for q = 0.7 but are excluded for q = 1.0 and vice versa.
We show the EOSs belonging to the first class of models
in Fig. 9(a) and the EOSs belonging to the second class of
models in Fig. 9(b). In general, for a given EOS, heavier
neutron stars have smaller tidal polarizabilities, and in-
creasing the mass asymmetry in the binary, i.e., lowering
q, results in slightly smaller values for Λ̃ for a given chirp
mass. Therefore, several smooth EOSs, i.e., without phase
transitions, pass the LV constraint for q = 0.7 but not for
q = 1.0, which can be seen in Fig. 9(a).

The more interesting case are EOS models with a strong
phase transition occurring around 1.4M� and leading to
a kink in the MR curve. Below the kink, radii and tidal
polarizabilities are larger but drastically decrease beyond
the phase transition. Two cases can be distinguished: the
phase transition appears at masses above 1.4M� or below
1.4M�. For the first case, q = 1 for GW170817 implies
that both stars have the same mass ∼ 1.4M� and, there-

fore, larger radii and tidal polarizabilities Λ̃ = Λ1 = Λ2.
Lowering q, so that the heavier star probes the phase tran-
sition, suddenly decreases Λ̃ by a fair amount. Therefore,
some EOS will be rejected for q = 1 but accepted for lower
q, e.g., q = 0.7. We show these models in Fig. 9(a). In con-
trast to the smooth models, though, these models permit
much larger radii for typical neutron stars, which can also
be seen in Fig. 3(b).

If the phase transition appears below 1.4M�, the in-
verted situation can appear: EOSs are ruled out for q = 0.7

but allowed for q = 1.0. We show these cases in the right
panel of Fig. 9. If the phase transition happens in very low-
mass stars at densities close to saturation density, then the
EOS produces neutron stars with very small radii of the
order of R1.4 ∼ 9 km. In this case, Λ̃ is reduced for smaller
values of q and the EOS is ruled out due to the lower con-
straint the tidal polarizability, 70 ≤ Λ̃. However, this is an
extremely rare situation and we find only one such EOS
among tens of thousands of samples, see Fig. 9(b). If the
phase transition appears in stars slightly below 1.4M�, for
q = 1 both stars in GW170817 would have been hybrid
stars and the Λ̃ would have been small enough for these
models to pass the constraint. Increasing the mass asym-
metry, Λ1 decreases but Λ2 increases rapidly, leading to
the EOS being rejected by the upper constraint on Λ̃. We
found a few such models, see Fig. 9(b).

In any case, information on possible strong first-order
phase transitions might be obtained by neutron-star merger
observations. The observation of two mergers with similar
chirp mass but different mass asymmetries and dramati-
cally different binary tidal polarizabilities might shed light
on the location of a strong first-order phase transition. In
addition, future observations accessing regions allowed by
the CSM but forbidden by the MM might also provide
information on such a phase transition. For these extrac-
tions, however, higher-order GW parameters need be con-
strained much more precisely in future observations.

3.7 Empirical relations for Λ̃

Finally, we use our EOS models to investigate the empiri-
cal relation between the tidal polarizability and the radius
of neutron stars. Such a relation was reported in Eq. (5)
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of Ref. [60], that related the binary tidal polarizability Λ̃
to the common radius of a neutron-star binary:

Λ̃ = 0.0042(4)

(
R̂c2

GMchirp

)6

= 0.000146(13)

(
R̂

km

)6

.

(29)
Similarly, a relation between the tidal polarizability and
radius of a typical 1.4M� neutron star was reported in
Ref. [7]:

Λ1.4 = 2.88 · 10−6
(
R1.4

km

)7.5

. (30)

Interestingly, even though both approaches are based on a
piecewise polytropic expansion for the EOS, the resulting
relations and especially exponents are rather different (for

q = 1, Λ̃ ∼ Λ1.4 and R̂ ∼ R1.4).

We constructed similar relations between Λ̃ and the av-
erage radius of the two binary neutron stars in GW170817
for the CSM and ntr = nsat and ntr = 2nsat. We show den-
sity plots for our data points and the resulting fit func-
tions in Fig. 10, together with the result of Ref. [60]. For
ntr = nsat (left panel), we find the relation

Λ̃ = 0.00057(6)

(
R̂c2

GMchirp

)7.05

. (31)

In this case, the exponent lies in between the other two
determinations but is closer to the result of Ref. [7]. For
ntr = 2nsat, we find instead

Λ̃ = 0.0047(8)

(
R̂c2

GMchirp

)5.94

, (32)

in very good agreement to the relation of Ref. [60]. Com-
paring the findings, we see that these relations are not
universal but depend on the EOS input used.

3.8 Comparisons to other recent works

There is general consensus that the upper bound on the
tidal deformability Λ1.4 < 800 derived by the initial anal-
ysis by the LIGO-Virgo scientific collaboration in Ref.[65]
implies that the radius R1.4 . 13.6 km. Making the rea-
sonable assumption that both compact objects were NSs,
and that they are both described by the same EOS, other
authors have discussed how the bound on the tidal de-
formability impacts our understanding of NSs and dense
matter. In what follows we compare our analysis to some
of these studies.

In Ref. [7] the authors construct a model for the EOS
based on the predictions of chiral EFT up to a baryon
number density nsat and use a set of four polytropes to
describe matter at higher densities encountered in the
core. They claim that perturbative calculations of QCD
(pQCD) valid at very high density, far exceeding those
encountered inside the NS core, can constrain the allowed

parameter space of the polytropic EOSs. This is then com-
bined with the upper limit on the tidal deformability to
constrain the relationship between mass and radius of all
NSs and the EOS of matter encountered in their cores.
The maximal model we employ addresses the question of
how improved constraints on the EOS from theory be-
tween nsat and 2nsat will alter the situation. We find no
evidence for the usefulness of constraints from pQCD. The
pressure in NS cores is much smaller than those encoun-
tered at the densities where pQCD is valid. Our maximal
model is thermodynamically consistent and has adequate
freedom to satisfy constraints from pQCD, but is unin-
formed by it.

In Ref. [8] the authors use a model EOS for neutron-
rich matter that describes matter at sub-nuclear density
encountered inside nuclei and at higher densities encoun-
tered inside neutron stars. They find a strong correlation
between the neutron-skin thickness of neutron-rich nuclei
and the neutron star tidal deformability, similar to the cor-
relation between the skin-thickness and neutron-star radii
found earlier [74]. Such a correlation is expected because
the NS radius and the tidal deformability are tightly cor-
related in models that do not contain phase transitions.
For their models they report a tight correlation given by
Λ ' 7.76 × 10−4 (R/km)5.3. Using the correlation be-
tween neutron skin thickness and NS radius they show
that the experimental lower bound on the neutron-skin
thickness of 208Pb implies R1.4 > 12.55 km. This, com-
bined with the correlation between Λ and R, is used to
deduce that Λ1.4 > 490. As discussed earlier, both these
correlations are model dependent. It is useful to compare
these inferences to the predictions of our minimal model
shown in Fig. 7 which assumes a smooth EOS without
phase transitions, does not violate experimental data for
the neutron-skin thickness of 208Pb, but can accommodate
smaller values for R1.4 and Λ1.4.

In Ref. [9], the authors impose an additional constraint
requiring that Mmax < 2.16 M� and employ EOSs with
and without strong first-order phase transitions to de-
termine limits on the neutron star radius and deforma-
bility. In the absence of phase transitions they find that
12 km < R1.4 < 13.45 km and require Λ1.4 > 375. This
range is deduced as the 2σ interval by exploring a large
suite of hadronic models. Our analysis based on the min-
imal model finds that smaller radii are possible. Further,
we caution against using a probabilistic interpretation of
the allowed ranges for R1.4 and Λ1.4 because it is difficult
to assign likelihoods to a specific realization of the EOS.
The inclusion of strong phase transitions in [9] allows for
the existence of ”twin star” solutions containing two sep-
arate stable branches of NSs. In this case, smaller values
for R1.4 and Λ1.4 are allowed and the constraints weaken
to R1.4 > 8.53 km and Λ1.4 > 35.5. The results obtained
using the maximal model (CSM) are in good agreement
with these limits.
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4 Summary

To summarize, we confronted the recent GW observation
with modern nuclear-physics constraints from chiral EFT.
We elaborated on our results of Ref. [11] and provided
many additional results.

In particular, we have used two different classes of
models to extend QMC results with chiral EFT interac-
tions to higher densities encountered in the core of neu-
tron stars. We have used a minimal model, that is based
on a density expansion around saturation density, and a
maximal model based on a very general expansion in the
speed of sound, that explores all EOSs consistent with the
low-density input from chiral EFT. We used these models
to study the uncertainties for the EOS and neutron-star
observables for chiral EFT input up to either nsat or 2nsat.

We used these models with input from nuclear physics
up to nuclear saturation density and data from GW170817
to deduce that the radius of a typical neutron star has to
be R1.4 ≤ 13.6 km. If instead EFT predictions for the
EOS are used up to twice nuclear saturation density we
find that Λ̃ < 580 and R1.4 ≤ 12.6 km. These smaller
ranges suggest that future observations need to provide
much more precise constraints to enable conclusions about
the EOS or provide evidence for novel phases of matter in
neutron stars. We compared our results to other recent
works, which arrived at the opposite conclusion, and dis-
cussed the robustness of our main statement.

We studied the impact of additional constraints on our
findings. Most of these additional constraints are derived
from interpretations of the EM counterpart of GW170817,
and provide limits on radii, tidal polarizabilities, or the
maximum mass. We showed that constraints on the max-
imum mass do not reduce the EOS uncertainty for typical
neutron stars, in contrast to radius information, which is
rather valuable. We also investigated how an upper limit
on the speed of sound in neutron stars affects our findings.

We finally investigated the impact of strong first-order
phase transitions on our predictions. Contrasting the pre-
dictions of the MM and the CSM may provide useful in-
sights on how future measurements of Λ̃ from neutron-star
mergers can help to identify new forms of matter at den-
sities beyond nuclear saturation.

To conclude, we pose the question if and when the
accuracy of gravitational-wave observations will be suffi-
ciently small to provide constraints on the EOS that are
tighter than the ones from nuclear theory. From our re-
sults, we estimate that the uncertainty Λ̃ needs to be of
the order of ∆Λ̃ < 300 to test the chiral EFT prediction in
the density range nsat − 2nsat. Based on the contrast be-
tween MM and CSM, we expect that ∆Λ̃ < 100 is needed
to shed light on the possible existence of phase transitions
in dense matter.
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