DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer

Abstract

A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty diesel engine running with a gasoline fuel that has a research octane number (RON) of 80. The goal was to optimize the gasoline compression ignition (GCI) combustion recipe (piston bowl geometry, injector spray pattern, in-cylinder swirl motion, and thermal boundary conditions) for improved fuel efficiency while maintaining engine-out NOx within a 1-1.5 g/kW-hr window. The numerical model was developed using the multi-dimensional CFD software CONVERGE. A two-stage design of experiments (DoE) approach was employed with the first stage focusing on the piston bowl shape optimization and the second addressing refinement of the combustion recipe. For optimizing the piston bowl geometry, a software tool, CAESES, was utilized to automatically perturb key bowl design parameters. This led to the generation of 256 combustion chamber designs evaluated at several engine operating conditions. The second DoE campaign was conducted to optimize injector spray patterns, fuel injection strategies and in-cylinder swirl motion for the best performing piston bowl designs from the first DoE campaign. This comprehensive optimization study was performed on a supercomputer, Mira, to accelerate the development of an optimized fuel-efficiency focused design. Compared to the production combustion system inmore » the baseline engine, the new combustion recipe from this study showed significantly improved closed-cycle fuel efficiency across key engine operating points while meeting the engine-out NOx targets. Optimized piston bowl designs and injector spray patterns were predicted to provide enhanced in-cylinder air utilization and more rapid mixing-controlled combustion, thereby leading to a fuel efficiency improvement. In addition, shifting the engine thermal boundary conditions toward leaner operation was also key to the improved fuel efficiency.« less

Authors:
 [1];  [2];  [1];  [1];  [1];  [3];  [3];  [4];  [2]
  1. Aramco Research Center, Detroit, MI (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Friendship Systems, Berlin (Germany)
  4. Convergent Science Inc., Madison, WI (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE; Aramco Services Company
OSTI Identifier:
1542586
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Society of Automotive Engineers Technical Paper Series
Additional Journal Information:
Journal Volume: 1; Journal Issue: 1; Journal ID: ISSN 0148-7191
Publisher:
SAE International
Country of Publication:
United States
Language:
English
Subject:
33 ADVANCED PROPULSION SYSTEMS

Citation Formats

Pei, Yuanjiang, Pal, Pinaki, Zhang, Yu, Traver, Michael, Cleary, David, Futterer, Carsten, Brenner, Mattia, Probst, Daniel, and Som, Sibendu. CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer. United States: N. p., 2019. Web. doi:10.4271/2019-01-0001.
Pei, Yuanjiang, Pal, Pinaki, Zhang, Yu, Traver, Michael, Cleary, David, Futterer, Carsten, Brenner, Mattia, Probst, Daniel, & Som, Sibendu. CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer. United States. https://doi.org/10.4271/2019-01-0001
Pei, Yuanjiang, Pal, Pinaki, Zhang, Yu, Traver, Michael, Cleary, David, Futterer, Carsten, Brenner, Mattia, Probst, Daniel, and Som, Sibendu. Tue . "CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer". United States. https://doi.org/10.4271/2019-01-0001. https://www.osti.gov/servlets/purl/1542586.
@article{osti_1542586,
title = {CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer},
author = {Pei, Yuanjiang and Pal, Pinaki and Zhang, Yu and Traver, Michael and Cleary, David and Futterer, Carsten and Brenner, Mattia and Probst, Daniel and Som, Sibendu},
abstractNote = {A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty diesel engine running with a gasoline fuel that has a research octane number (RON) of 80. The goal was to optimize the gasoline compression ignition (GCI) combustion recipe (piston bowl geometry, injector spray pattern, in-cylinder swirl motion, and thermal boundary conditions) for improved fuel efficiency while maintaining engine-out NOx within a 1-1.5 g/kW-hr window. The numerical model was developed using the multi-dimensional CFD software CONVERGE. A two-stage design of experiments (DoE) approach was employed with the first stage focusing on the piston bowl shape optimization and the second addressing refinement of the combustion recipe. For optimizing the piston bowl geometry, a software tool, CAESES, was utilized to automatically perturb key bowl design parameters. This led to the generation of 256 combustion chamber designs evaluated at several engine operating conditions. The second DoE campaign was conducted to optimize injector spray patterns, fuel injection strategies and in-cylinder swirl motion for the best performing piston bowl designs from the first DoE campaign. This comprehensive optimization study was performed on a supercomputer, Mira, to accelerate the development of an optimized fuel-efficiency focused design. Compared to the production combustion system in the baseline engine, the new combustion recipe from this study showed significantly improved closed-cycle fuel efficiency across key engine operating points while meeting the engine-out NOx targets. Optimized piston bowl designs and injector spray patterns were predicted to provide enhanced in-cylinder air utilization and more rapid mixing-controlled combustion, thereby leading to a fuel efficiency improvement. In addition, shifting the engine thermal boundary conditions toward leaner operation was also key to the improved fuel efficiency.},
doi = {10.4271/2019-01-0001},
journal = {Society of Automotive Engineers Technical Paper Series},
number = 1,
volume = 1,
place = {United States},
year = {Tue Jan 15 00:00:00 EST 2019},
month = {Tue Jan 15 00:00:00 EST 2019}
}