DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1–xZnxFeS2 with In Situ Nanoprecipitates

Abstract

Chalcopyrite (CuFeS2) is a widespread natural mineral, composed of earth–abundant and nontoxic elements. It has been considered a promising n–type material for thermoelectric applications. In this work, a series of Zn–doped Cu1–xZnxFeS2 (x = 0–0.1) compounds are synthesized by vacuum melting combined with the plasma activated sintering process. The role of Zn in the chalcopyrite and its different effects on thermoelectric properties, depending on its concentration and location in the crystal lattice, are discussed. It is found that Zn is an effective donor which increases the carrier concentration and improves the thermoelectric properties of CuFeS2. Here, when the content of Zn exceeds the solubility limit, Zn partially enters the Cu sites and forms in situ ZnS nanophase. This, in turn, shifts the balance between the anion and cation species which is re–established by the formation of antisite Fe/Cu defects. Beyond maintaining charge neutrality of the structure, such antisite defects relieve the lattice strain in the matrix and increase the solubility of Zn further. The highest ZT value of 0.26 is achieved at 630 K for Cu0.92Zn0.08FeS2, which represents an enhancement of about 80% over that of the pristine CuFeS2 sample.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2];  [3];  [1]
  1. Wuhan University of Technology (China)
  2. University of Michigan, Ann Arbor, MI (United States)
  3. Northwestern University, Evanston, IL (United States)
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Natural Science Foundation of China
OSTI Identifier:
1533065
Alternate Identifier(s):
OSTI ID: 1401491
Grant/Contract Number:  
PI0000012; 51402222; 51172174; 51521001; 51632006; SC000105
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 7; Journal Issue: 3; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Chemistry; Energy & Fuels; Materials Science; Physics; Environmentally friendly; In situ Nanoprecipitates; Thermal resistance; Thermoelectric

Citation Formats

Xie, Hongyao, Su, Xianli, Zheng, Gang, Zhu, Ting, Yin, Kang, Yan, Yonggao, Uher, Ctirad, Kanatzidis, Mercouri G., and Tang, Xinfeng. The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1–xZnxFeS2 with In Situ Nanoprecipitates. United States: N. p., 2016. Web. doi:10.1002/aenm.201601299.
Xie, Hongyao, Su, Xianli, Zheng, Gang, Zhu, Ting, Yin, Kang, Yan, Yonggao, Uher, Ctirad, Kanatzidis, Mercouri G., & Tang, Xinfeng. The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1–xZnxFeS2 with In Situ Nanoprecipitates. United States. https://doi.org/10.1002/aenm.201601299
Xie, Hongyao, Su, Xianli, Zheng, Gang, Zhu, Ting, Yin, Kang, Yan, Yonggao, Uher, Ctirad, Kanatzidis, Mercouri G., and Tang, Xinfeng. Thu . "The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1–xZnxFeS2 with In Situ Nanoprecipitates". United States. https://doi.org/10.1002/aenm.201601299. https://www.osti.gov/servlets/purl/1533065.
@article{osti_1533065,
title = {The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1–xZnxFeS2 with In Situ Nanoprecipitates},
author = {Xie, Hongyao and Su, Xianli and Zheng, Gang and Zhu, Ting and Yin, Kang and Yan, Yonggao and Uher, Ctirad and Kanatzidis, Mercouri G. and Tang, Xinfeng},
abstractNote = {Chalcopyrite (CuFeS2) is a widespread natural mineral, composed of earth–abundant and nontoxic elements. It has been considered a promising n–type material for thermoelectric applications. In this work, a series of Zn–doped Cu1–xZnxFeS2 (x = 0–0.1) compounds are synthesized by vacuum melting combined with the plasma activated sintering process. The role of Zn in the chalcopyrite and its different effects on thermoelectric properties, depending on its concentration and location in the crystal lattice, are discussed. It is found that Zn is an effective donor which increases the carrier concentration and improves the thermoelectric properties of CuFeS2. Here, when the content of Zn exceeds the solubility limit, Zn partially enters the Cu sites and forms in situ ZnS nanophase. This, in turn, shifts the balance between the anion and cation species which is re–established by the formation of antisite Fe/Cu defects. Beyond maintaining charge neutrality of the structure, such antisite defects relieve the lattice strain in the matrix and increase the solubility of Zn further. The highest ZT value of 0.26 is achieved at 630 K for Cu0.92Zn0.08FeS2, which represents an enhancement of about 80% over that of the pristine CuFeS2 sample.},
doi = {10.1002/aenm.201601299},
journal = {Advanced Energy Materials},
number = 3,
volume = 7,
place = {United States},
year = {Thu Oct 27 00:00:00 EDT 2016},
month = {Thu Oct 27 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 142 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials
journal, September 2015

  • Fu, Chenguang; Bai, Shengqiang; Liu, Yintu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9144

Cu and Fe valence states in CuFeS2
journal, May 2004

  • Boekema, C.; Krupski, A. M.; Varasteh, M.
  • Journal of Magnetism and Magnetic Materials, Vol. 272-276
  • DOI: 10.1016/j.jmmm.2003.11.206

Beneficial Contribution of Alloy Disorder to Electron and Phonon Transport in Half-Heusler Thermoelectric Materials
journal, April 2013

  • Xie, Hanhui; Wang, Heng; Pei, Yanzhong
  • Advanced Functional Materials, Vol. 23, Issue 41
  • DOI: 10.1002/adfm.201300663

Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi 2 Te 3 Doping
journal, August 2014

  • Wu, Di; Zhao, Li-Dong; Hao, Shiqiang
  • Journal of the American Chemical Society, Vol. 136, Issue 32
  • DOI: 10.1021/ja504896a

Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites
journal, January 2014

  • Liang, Tao; Su, Xianli; Yan, Yonggao
  • J. Mater. Chem. A, Vol. 2, Issue 42
  • DOI: 10.1039/C4TA02780A

Thermoelectric Property Studies on Cu-Doped n-type CuxBi2Te2.7Se0.3 Nanocomposites
journal, June 2011

  • Liu, Wei-Shu; Zhang, Qinyong; Lan, Yucheng
  • Advanced Energy Materials, Vol. 1, Issue 4, p. 577-587
  • DOI: 10.1002/aenm.201100149

Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures
journal, September 1963


High thermoelectric performance of mechanically robust n-type Bi 2 Te 3−x Se x prepared by combustion synthesis
journal, January 2015

  • Zheng, Gang; Su, Xianli; Liang, Tao
  • Journal of Materials Chemistry A, Vol. 3, Issue 12
  • DOI: 10.1039/C5TA00470E

Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports
journal, May 2011

  • Shi, Xun; Yang, Jiong; Salvador, James R.
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja111199y

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Characterization of Fe 3d states in CuFeS 2 by resonant X-ray emission spectroscopy
journal, May 2009

  • Sato, Katsuaki; Harada, Yoshihisa; Taguchi, Munetaka
  • physica status solidi (a), Vol. 206, Issue 5
  • DOI: 10.1002/pssa.200881196

New Directions for Low-Dimensional Thermoelectric Materials
journal, April 2007

  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.
  • Advanced Materials, Vol. 19, Issue 8, p. 1043-1053
  • DOI: 10.1002/adma.200600527

Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds
journal, August 2004

  • Yang, J.; Meisner, G. P.; Chen, L.
  • Applied Physics Letters, Vol. 85, Issue 7
  • DOI: 10.1063/1.1783022

Effect of Isotopes on Low-Temperature Thermal Conductivity
journal, February 1957


Specific Heats at Low Temperatures
book, January 1966


Convergence of electronic bands for high performance bulk thermoelectrics
journal, May 2011

  • Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron
  • Nature, Vol. 473, Issue 7345, p. 66-69
  • DOI: 10.1038/nature09996

Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States
journal, July 2008

  • Heremans, J. P.; Jovovic, V.; Toberer, E. S.
  • Science, Vol. 321, Issue 5888, p. 554-557
  • DOI: 10.1126/science.1159725

High thermoelectric figure of merit in the Cu 3 SbSe 4 -Cu 3 SbS 4 solid solution
journal, June 2011

  • Skoug, Eric J.; Cain, Jeffrey D.; Morelli, Donald T.
  • Applied Physics Letters, Vol. 98, Issue 26
  • DOI: 10.1063/1.3605246

Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n -Type Mg 2 Si 1 x Sn x Solid Solutions
journal, April 2012


Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View
journal, March 2006

  • Tritt, Terry M.; Subramanian, M. A.
  • MRS Bulletin, Vol. 31, Issue 3
  • DOI: 10.1557/mrs2006.44

High-performance bulk thermoelectrics with all-scale hierarchical architectures
journal, September 2012

  • Biswas, Kanishka; He, Jiaqing; Blum, Ivan D.
  • Nature, Vol. 489, Issue 7416, p. 414-418
  • DOI: 10.1038/nature11439

Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb) 2 Te 3 Nanocomposites
journal, September 2010

  • Xie, Wenjie; He, Jian; Kang, Hye Jung
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl100804a

Charge-Compensated Compound Defects in Ga-containing Thermoelectric Skutterudites
journal, February 2013

  • Qiu, Yuting; Xi, Lili; Shi, Xun
  • Advanced Functional Materials, Vol. 23, Issue 25
  • DOI: 10.1002/adfm.201202571

Thermoelectric transport properties of diamond-like Cu 1−x Fe 1+x S 2 tetrahedral compounds
journal, November 2014

  • Li, Yulong; Zhang, Tiansong; Qin, Yuting
  • Journal of Applied Physics, Vol. 116, Issue 20
  • DOI: 10.1063/1.4902849

Optical Reflectivity Spectrum of a CuFeS 2 Single Crystal
journal, January 1980

  • Oguchi, Tamio; Sato, Katsuaki; Teranishi, Teruo
  • Journal of the Physical Society of Japan, Vol. 48, Issue 1
  • DOI: 10.1143/JPSJ.48.123

Colloidal Synthesis of Cu 2 CdSnSe 4 Nanocrystals and Hot-Pressing to Enhance the Thermoelectric Figure-of-Merit
journal, October 2011

  • Fan, Feng-Jia; Yu, Bo; Wang, Yi-Xiu
  • Journal of the American Chemical Society, Vol. 133, Issue 40
  • DOI: 10.1021/ja207159j

Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance
journal, June 1987


Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
journal, April 2014

  • Zhao, Li-Dong; Lo, Shih-Han; Zhang, Yongsheng
  • Nature, Vol. 508, Issue 7496, p. 373-377
  • DOI: 10.1038/nature13184

Tellurium as a high-performance elemental thermoelectric
journal, January 2016

  • Lin, Siqi; Li, Wen; Chen, Zhiwei
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10287

Model for Lattice Thermal Conductivity at Low Temperatures
journal, February 1959


Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1−xInxSe4
journal, March 2009

  • Shi, X. Y.; Huang, F. Q.; Liu, M. L.
  • Applied Physics Letters, Vol. 94, Issue 12
  • DOI: 10.1063/1.3103604

High Thermoelectric Performance and Enhanced Mechanical Stability of p -type Ge 1– x Sb x Te
journal, October 2015


Self-Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance
journal, February 2011

  • Pei, Yanzhong; May, Andrew F.; Snyder, G. Jeffrey
  • Advanced Energy Materials, Vol. 1, Issue 2
  • DOI: 10.1002/aenm.201000072

High Thermoelectric Power Factor in a Carrier-Doped Magnetic Semiconductor CuFeS 2
journal, April 2013


Kinetic phenomena in zero-gap semiconductors CuFeS2 and CuFeTe2: Effect of pressure and heat treatment
journal, October 2011

  • Popov, V. V.; Konstantinov, P. P.; Rud’, Yu. V.
  • Journal of Experimental and Theoretical Physics, Vol. 113, Issue 4
  • DOI: 10.1134/S1063776111090093

Effect of Point Imperfections on Lattice Thermal Conductivity
journal, November 1960


Thermoelectric properties of Sn-doped p-type Cu 3 SbSe 4 : a compound with large effective mass and small band gap
journal, January 2014

  • Wei, Tian-Ran; Wang, Heng; Gibbs, Zachary M.
  • J. Mater. Chem. A, Vol. 2, Issue 33
  • DOI: 10.1039/C4TA01957A

New and Old Concepts in Thermoelectric Materials
journal, November 2009

  • Sootsman, Joseph R.; Chung, Duck Young; Kanatzidis, Mercouri G.
  • Angewandte Chemie International Edition, Vol. 48, Issue 46, p. 8616-8639
  • DOI: 10.1002/anie.200900598

Effective thermal conductivity of particulate composites with interfacial thermal resistance
journal, May 1997

  • Nan, Ce-Wen; Birringer, R.; Clarke, David R.
  • Journal of Applied Physics, Vol. 81, Issue 10
  • DOI: 10.1063/1.365209

Thermal Conductivity of Heterogeneous Two-Component Systems
journal, August 1962

  • Hamilton, R. L.; Crosser, O. K.
  • Industrial & Engineering Chemistry Fundamentals, Vol. 1, Issue 3
  • DOI: 10.1021/i160003a005

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Phase Stability and Thermoelectric Properties of CuFeS2-Based Magnetic Semiconductor
journal, March 2014

  • Tsujii, Naohito; Mori, Takao; Isoda, Yukihiro
  • Journal of Electronic Materials, Vol. 43, Issue 6
  • DOI: 10.1007/s11664-014-3072-y

Thermoelectric properties of n-type cobalt doped chalcopyrite Cu1−xCoxFeS2 and p-type eskebornite CuFeSe2
journal, March 2015


Structural evolvement and thermoelectric properties of Cu 3−x Sn x Se 3 compounds with diamond-like crystal structures
journal, January 2014

  • Fan, Jing; Schnelle, Walter; Antonyshyn, Iryna
  • Dalton Trans., Vol. 43, Issue 44
  • DOI: 10.1039/C4DT01457J

Thermoelectricity Generation and Electron-Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent
journal, September 2015

  • Ang, Ran; Khan, Atta Ullah; Tsujii, Naohito
  • Angewandte Chemie International Edition, Vol. 54, Issue 44
  • DOI: 10.1002/anie.201505517

High Performance Thermoelectrics from Earth-Abundant Materials: Enhanced Figure of Merit in PbS by Second Phase Nanostructures
journal, December 2011

  • Zhao, Li-Dong; Lo, Shih-Han; He, Jiaqing
  • Journal of the American Chemical Society, Vol. 133, Issue 50
  • DOI: 10.1021/ja208658w

A facile synthetic approach for copper iron sulfide nanocrystals with enhanced thermoelectric performance
journal, January 2012

  • Liang, Daxin; Ma, Ruoshui; Jiao, Shihui
  • Nanoscale, Vol. 4, Issue 20
  • DOI: 10.1039/c2nr31193c

Microstructure Engineering Design for Thermoelectric Materials: An Approach to Minimize Thermal Diffusivity
journal, February 2010

  • Gorsse, S.; Bauer Pereira, P.; Decourt, R.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901862m

Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing
journal, September 2014

  • Su, Xianli; Fu, Fan; Yan, Yonggao
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5908

Introduction to Thermoelectricity
book, January 2010


The effect of particle size on the thermal conductivity of ZnS/diamond composites
journal, January 1992


The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions
journal, October 2012

  • Wang, Heng; LaLonde, Aaron D.; Pei, Yanzhong
  • Advanced Functional Materials, Vol. 23, Issue 12
  • DOI: 10.1002/adfm.201201576

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe
journal, November 2015


Synthesis and property evaluation of CuFeS2−x as earth-abundant and environmentally-friendly thermoelectric materials
journal, February 2013


Low effective mass and carrier concentration optimization for high performance p-type Mg 2(1−x) Li 2x Si 0.3 Sn 0.7 solid solutions
journal, January 2014

  • Zhang, Qiang; Cheng, Long; Liu, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 43
  • DOI: 10.1039/C4CP03468F

Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports
journal, January 2012

  • Shi, Xun; Yang, Jiong; Salvador, James R.
  • Journal of the American Chemical Society, Vol. 134, Issue 5
  • DOI: 10.1021/ja211185w

Complex thermoelectric materials
book, October 2010


Thermoelectricity Generation and Electron-Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent
journal, September 2015

  • Ang, Ran; Khan, Atta Ullah; Tsujii, Naohito
  • Angewandte Chemie, Vol. 127, Issue 44
  • DOI: 10.1002/ange.201505517

New Directions for Low-Dimensional Thermoelectric Materials
journal, June 2007

  • Dresselhaus, Mildred S.; Chen, Gang; Tang, Ming Y.
  • ChemInform, Vol. 38, Issue 26
  • DOI: 10.1002/chin.200726202

Introduction to Thermoelectricity
book, January 2016


Works referencing / citing this record:

Twin Engineering in Solution-Synthesized Nonstoichiometric Cu 5 FeS 4 Icosahedral Nanoparticles for Enhanced Thermoelectric Performance
journal, January 2018

  • Zhang, Aijuan; Zhang, Bin; Lu, Wei
  • Advanced Functional Materials, Vol. 28, Issue 10
  • DOI: 10.1002/adfm.201705117

Intrinsically High Thermoelectric Performance in AgInSe 2 n-Type Diamond-Like Compounds
journal, December 2017


Weak Electron Phonon Coupling and Deep Level Impurity for High Thermoelectric Performance Pb 1− x Ga x Te
journal, May 2018

  • Su, Xianli; Hao, Shiqiang; Bailey, Trevor P.
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201800659

High Power Factors of Thermoelectric Colusites Cu 26 T 2 Ge 6 S 32 ( T = Cr, Mo, W): Toward Functionalization of the Conductive “Cu–S” Network
journal, December 2018

  • Pavan Kumar, Ventrapati; Supka, Andrew R.; Lemoine, Pierric
  • Advanced Energy Materials, Vol. 9, Issue 6
  • DOI: 10.1002/aenm.201803249

Doping and Surface Effects of CuFeS 2 Nanocrystals Used in Thermoelectric Nanocomposites
journal, July 2018


Copper Sulfides: Earth‐Abundant and Low‐Cost Thermoelectric Materials
journal, April 2019

  • Mulla, Rafiq; Rabinal, Mohammad Hussain Kasim
  • Energy Technology, Vol. 7, Issue 7
  • DOI: 10.1002/ente.201800850

Achieving high thermoelectric properties of Bi2S3 via InCl3 doping
journal, September 2019


Thermoelectric and Transport Properties of n-type Palladium-Doped Chalcopyrite Cu1−xPdxFeS2 Compounds
journal, January 2019

  • Navratil, Jiří; Kašparová, Jana; Plecháček, Tomáš
  • Journal of Electronic Materials, Vol. 48, Issue 4
  • DOI: 10.1007/s11664-018-06866-0

Copper chalcogenide thermoelectric materials
journal, August 2018


Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion
journal, June 2017

  • Xie, Hongyao; Su, Xianli; Yan, Yonggao
  • NPG Asia Materials, Vol. 9, Issue 6
  • DOI: 10.1038/am.2017.80

Ternary metal selenide/MWCNT/PANI: potential n-type nanohybrids for room-temperature thermoelectric applications
journal, January 2019

  • Kshirsagar, Anuraj S.; More, Priyesh V.; Dey, Abhijit
  • Dalton Transactions, Vol. 48, Issue 38
  • DOI: 10.1039/c9dt02225b

Integration of multi-scale defects for optimizing thermoelectric properties of n-type Cu 1−x Cd x FeS 2 ( x = 0–0.1)
journal, January 2019

  • Ge, Bangzhi; Hu, Jiabin; Shi, Zhongqi
  • Nanoscale, Vol. 11, Issue 37
  • DOI: 10.1039/c9nr04693c

Thermoelectric properties of n-type Cu 4 Sn 7 S 16 -based compounds
journal, January 2019

  • Deng, Tingting; Wei, Tian-Ran; Song, Qingfeng
  • RSC Advances, Vol. 9, Issue 14
  • DOI: 10.1039/c9ra00077a

Highly luminescent NIR-emitting CuFeS 2 /ZnS core/shell quantum dots for optical imaging of inflamed tissue
journal, January 2019

  • Yan, Tong; Li, Yunyan; Song, Xiaoxiao
  • Journal of Materials Chemistry C, Vol. 7, Issue 24
  • DOI: 10.1039/c9tc01571j

The p–n transformation and thermoelectric property optimization of Cu 1+x FeSe 2 ( x = 0–0.05) alloys
journal, January 2019

  • Zhai, Jinze; Wang, Hongchao; Su, Wenbin
  • Journal of Materials Chemistry C, Vol. 7, Issue 31
  • DOI: 10.1039/c9tc01607d

First-principles assessment of thermoelectric properties of CuFeS2
journal, March 2019

  • Park, Junsoo; Xia, Yi; Ozoliņš, Vidvuds
  • Journal of Applied Physics, Vol. 125, Issue 12
  • DOI: 10.1063/1.5088165

Recent developments in Earth-abundant copper-sulfide thermoelectric materials
journal, September 2019

  • Powell, Anthony V.
  • Journal of Applied Physics, Vol. 126, Issue 10
  • DOI: 10.1063/1.5119345

Features of 63,65Cu NMR Spectra in the Local Field of Samples of CuFeS2 Semiconductor Mineral from Oceanic Sulfide Deposits
journal, July 2018