DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mass-transport properties of electrosprayed Pt/C catalyst layers for polymer-electrolyte fuel cells

Abstract

Mass-transport properties of electrosprayed catalyst-layers based on Pt/C and ionomer (Nafion) are investigated with hydrogen limiting-current technique, water-vapor-uptake, scanning transmission microscopy (STEM), single-cell testing, and impedance spectroscopy. The hydrogen limiting-current technique provides the transport resistance of the layers (RCLmt), which demonstrates to be lower in electrosprayed layers compared with conventional layers, especially at very low platinum loadings (0.025 mgPt·cm-2) and low cell temperature, denoting superior mass-transport properties. Images of the distribution of Pt, F, and C elements reveal the ionomer preferentially interacting with the Pt nanoparticles. Water-vapor-uptake experiments show larger vapor absorption for electrosprayed than conventional catalyst layers. Such large water-vapor uptake capability is combined with superhydrophobicity, ie. very low interaction with water in liquid phase (wettability). Both apparently contradictory properties result from a particular configuration of the amphiphilic ionomer in the electrosprayed layers, and provide ideal conditions for high mass transport and ionic conductivity in a catalyst layer. Electrosprayed layers as cathode catalyst layers reflect peak response at a loading of 0.17 mgPt·cm-2 (18 μm layer thickness when using Pt/C 20 wt% catalyst) where they provide minimal mass-transport and polarization resistances.

Authors:
ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [2];  [2];  [3]; ORCiD logo [2]
  1. Research Centre for Energy, Environment and Technology (CIEMAT), Madrid (Spain)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1531234
Alternate Identifier(s):
OSTI ID: 1564467
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Power Sources
Additional Journal Information:
Journal Volume: 427; Journal Issue: C; Journal ID: ISSN 0378-7753
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
08 HYDROGEN; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; PEMFC; Catalyst layer; Electrospray; Mass transport; Water uptake; Thin porous film

Citation Formats

Conde, Julio J., Folgado, M. Antonia, Ferreira-Aparicio, P., Chaparro, Antonio M., Chowdhury, Anamika, Kusoglu, Ahmet, Cullen, David, and Weber, Adam Z. Mass-transport properties of electrosprayed Pt/C catalyst layers for polymer-electrolyte fuel cells. United States: N. p., 2019. Web. doi:10.1016/j.jpowsour.2019.04.079.
Conde, Julio J., Folgado, M. Antonia, Ferreira-Aparicio, P., Chaparro, Antonio M., Chowdhury, Anamika, Kusoglu, Ahmet, Cullen, David, & Weber, Adam Z. Mass-transport properties of electrosprayed Pt/C catalyst layers for polymer-electrolyte fuel cells. United States. https://doi.org/10.1016/j.jpowsour.2019.04.079
Conde, Julio J., Folgado, M. Antonia, Ferreira-Aparicio, P., Chaparro, Antonio M., Chowdhury, Anamika, Kusoglu, Ahmet, Cullen, David, and Weber, Adam Z. Wed . "Mass-transport properties of electrosprayed Pt/C catalyst layers for polymer-electrolyte fuel cells". United States. https://doi.org/10.1016/j.jpowsour.2019.04.079. https://www.osti.gov/servlets/purl/1531234.
@article{osti_1531234,
title = {Mass-transport properties of electrosprayed Pt/C catalyst layers for polymer-electrolyte fuel cells},
author = {Conde, Julio J. and Folgado, M. Antonia and Ferreira-Aparicio, P. and Chaparro, Antonio M. and Chowdhury, Anamika and Kusoglu, Ahmet and Cullen, David and Weber, Adam Z.},
abstractNote = {Mass-transport properties of electrosprayed catalyst-layers based on Pt/C and ionomer (Nafion) are investigated with hydrogen limiting-current technique, water-vapor-uptake, scanning transmission microscopy (STEM), single-cell testing, and impedance spectroscopy. The hydrogen limiting-current technique provides the transport resistance of the layers (RCLmt), which demonstrates to be lower in electrosprayed layers compared with conventional layers, especially at very low platinum loadings (0.025 mgPt·cm-2) and low cell temperature, denoting superior mass-transport properties. Images of the distribution of Pt, F, and C elements reveal the ionomer preferentially interacting with the Pt nanoparticles. Water-vapor-uptake experiments show larger vapor absorption for electrosprayed than conventional catalyst layers. Such large water-vapor uptake capability is combined with superhydrophobicity, ie. very low interaction with water in liquid phase (wettability). Both apparently contradictory properties result from a particular configuration of the amphiphilic ionomer in the electrosprayed layers, and provide ideal conditions for high mass transport and ionic conductivity in a catalyst layer. Electrosprayed layers as cathode catalyst layers reflect peak response at a loading of 0.17 mgPt·cm-2 (18 μm layer thickness when using Pt/C 20 wt% catalyst) where they provide minimal mass-transport and polarization resistances.},
doi = {10.1016/j.jpowsour.2019.04.079},
journal = {Journal of Power Sources},
number = C,
volume = 427,
place = {United States},
year = {Wed Jun 12 00:00:00 EDT 2019},
month = {Wed Jun 12 00:00:00 EDT 2019}
}

Journal Article:

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Polymer Electrolyte Fuel Cell Model
journal, January 1991

  • Springer, T. E.
  • Journal of The Electrochemical Society, Vol. 138, Issue 8
  • DOI: 10.1149/1.2085971

Modeling Transport in Polymer-Electrolyte Fuel Cells
journal, October 2004

  • Weber, Adam Z.; Newman, John
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020729l

PEM fuel cell electrodes
journal, May 2004


Study of membrane electrode assemblies for PEMFC, with cathodes prepared by the electrospray method
journal, June 2007


Properties of Catalyst Layers for PEMFC Electrodes Prepared by Electrospray Deposition
journal, January 2010

  • Chaparro, A. M.; Folgado, M. A.; Ferreira-Aparicio, P.
  • Journal of The Electrochemical Society, Vol. 157, Issue 7
  • DOI: 10.1149/1.3425740

High platinum utilization in ultra-low Pt loaded PEM fuel cell cathodes prepared by electrospraying
journal, October 2010


Improvement of Cell Performance in Low-Pt-Loading PEFC Cathode Catalyst Layers Prepared by the Electrospray Method
journal, January 2016

  • Takahashi, Kento; Kakinuma, Katsuyoshi; Uchida, Makoto
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.0611610jes

Experimental Investigation of Electrospray Coating Technique for Electrode Fabrication in PEMFCs
journal, May 2017


Catalyst layers for proton exchange membrane fuel cells prepared by electrospray deposition on Nafion membrane
journal, May 2011


Study of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique
journal, September 2016


Modeling the Effects of Capillary Property of Porous Media on the Performance of the Cathode of a PEMFC
journal, January 2008

  • Wang, Xuhai; Nguyen, Trung Van
  • Journal of The Electrochemical Society, Vol. 155, Issue 11
  • DOI: 10.1149/1.2965512

Pore network model of the cathode catalyst layer of proton exchange membrane fuel cells: Analysis of water management and electrical performance
journal, December 2012


Degradation Study by Start-Up/Shut-Down Cycling of Superhydrophobic Electrosprayed Catalyst Layers Using a Localized Reference Electrode Technique
journal, March 2017

  • Ferreira-Aparicio, Paloma; Chaparro, Antonio M.; Folgado, M. Antonia
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 12
  • DOI: 10.1021/acsami.6b15581

Single Cell Study of Water Transport in PEMFCs with Electrosprayed Catalyst Layers
journal, June 2018

  • Folgado, M. A.; Conde, J. J.; Ferreira-Aparicio, P.
  • Fuel Cells, Vol. 18, Issue 5
  • DOI: 10.1002/fuce.201700217

The Impact of Platinum Loading on Oxygen Transport Resistance
journal, January 2012

  • Greszler, Thomas A.; Caulk, David; Sinha, Puneet
  • Journal of The Electrochemical Society, Vol. 159, Issue 12
  • DOI: 10.1149/2.061212jes

Effective-Diffusivity Measurement of Partially-Saturated Fuel-Cell Gas-Diffusion Layers
journal, January 2012

  • Hwang, G. S.; Weber, A. Z.
  • Journal of The Electrochemical Society, Vol. 159, Issue 11
  • DOI: 10.1149/2.024211jes

Unexplained transport resistances for low-loaded fuel-cell catalyst layers
journal, January 2014

  • Weber, Adam Z.; Kusoglu, Ahmet
  • J. Mater. Chem. A, Vol. 2, Issue 41
  • DOI: 10.1039/C4TA02952F

The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells
journal, March 2016


Investigating fuel-cell transport limitations using hydrogen limiting current
journal, May 2017


Analysis of Oxygen-Transport Diffusion Resistance in Proton-Exchange-Membrane Fuel Cells
journal, January 2011

  • Nonoyama, Nobuaki; Okazaki, Shinobu; Weber, Adam Z.
  • Journal of The Electrochemical Society, Vol. 158, Issue 4
  • DOI: 10.1149/1.3546038

Impact of Platinum Loading and Catalyst Layer Structure on PEMFC Performance
journal, January 2013

  • Owejan, Jon P.; Owejan, Jeanette E.; Gu, Wenbin
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.072308jes

Measurement of Oxygen Transport Resistance in PEM Fuel Cells by Limiting Current Methods
journal, January 2009

  • Baker, Daniel R.; Caulk, David A.; Neyerlin, Kenneth C.
  • Journal of The Electrochemical Society, Vol. 156, Issue 9
  • DOI: 10.1149/1.3152226

The Analysis of Performance Loss with Low Platinum Loaded Cathode Catalyst Layers
journal, April 2010

  • Ono, Yoshitaka; Mashio, Tetsuya; Takaichi, Satoshi
  • ECS Transactions, Vol. 28, Issue 27
  • DOI: 10.1149/1.3496614

Polarization loss correction derived from hydrogen local-resistance measurement in low Pt-loaded polymer-electrolyte fuel cells
journal, June 2017


Fuel-Cell Catalyst-Layer Resistance via Hydrogen Limiting-Current Measurements
journal, January 2019

  • Schuler, Tobias; Chowdhury, Anamika; Freiberg, Anna T.
  • Journal of The Electrochemical Society, Vol. 166, Issue 7
  • DOI: 10.1149/2.0031907jes

Transport Resistances in Fuel-Cell Catalyst Layers
journal, August 2017

  • Chowdhury, Anamika; Radke, Clayton J.; Weber, Adam Z.
  • ECS Transactions, Vol. 80, Issue 8
  • DOI: 10.1149/08008.0321ecst

High-Resolution Mapping of the PFSA Polymer Distribution in PEFC Electrode Layers
journal, August 2014


Imaging and Microanalysis of Thin Ionomer Layers by Scanning Transmission Electron Microscopy
journal, January 2014

  • Cullen, D. A.; Koestner, R.; Kukreja, R. S.
  • Journal of The Electrochemical Society, Vol. 161, Issue 10
  • DOI: 10.1149/2.1091410jes

Water Uptake of Fuel-Cell Catalyst Layers
journal, January 2012

  • Kusoglu, Ahmet; Kwong, Anthony; Clark, Kyle T.
  • Journal of The Electrochemical Society, Vol. 159, Issue 9
  • DOI: 10.1149/2.031209jes

Understanding the Behavior of Electrosprayed Carbon Black-Nafion Composite Layers
journal, September 2018

  • Conde, J. J.; Chaparro, A. M.; Ferreira-Aparicio, P.
  • Fuel Cells, Vol. 18, Issue 5
  • DOI: 10.1002/fuce.201700218

Anti-corrosion coating for metal surfaces based on superhydrophobic electrosprayed carbon layers
journal, December 2018

  • Conde, Julio J.; Ferreira-Aparicio, Paloma; Chaparro, Antonio M.
  • Applied Materials Today, Vol. 13
  • DOI: 10.1016/j.apmt.2018.08.001

Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells
journal, May 2016


PEMFC electrode preparation by electrospray: Optimization of catalyst load and ionomer content
journal, May 2009


Determination of Catalyst Unique Parameters for the Oxygen Reduction Reaction in a PEMFC
journal, January 2006

  • Neyerlin, K. C.; Gu, Wenbin; Jorne, Jacob
  • Journal of The Electrochemical Society, Vol. 153, Issue 10
  • DOI: 10.1149/1.2266294

The effectiveness of platinum/carbon electrocatalysts: Dependence on catalyst layer thickness and Pt alloy catalytic effects
journal, May 2011


A Microelectrode Study of Oxygen Reduction at the Platinum/Recast‐Nafion Film Interface
journal, March 1992

  • Uribe, Francisco A.; Springer, Thomas E.; Gottesfeld, Shimshon
  • Journal of The Electrochemical Society, Vol. 139, Issue 3
  • DOI: 10.1149/1.2069299

Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy
journal, January 1996

  • Springer, T. E.
  • Journal of The Electrochemical Society, Vol. 143, Issue 2
  • DOI: 10.1149/1.1836485

Impedance of porous electrodes
journal, November 1995


Wetting and Roughness
journal, August 2008


Works referencing / citing this record:

Sustainable Platinum Recycling through Electrochemical Dissolution of Platinum Nanoparticles from Fuel Cell Electrodes
journal, August 2019

  • Sharma, Raghunandan; Rode Nielsen, Kasper; Brilner Lund, Peter
  • ChemElectroChem, Vol. 6, Issue 17
  • DOI: 10.1002/celc.201900846